Особенности конструкции ротора асинхронного тягового двигателя. Особенности работы и конструкции асинхронного двигателя. Магнитные и нагрузочные характеристики тягового электродвигателя

Трехфазный асинхронный двигатель изобретен в конце 80-х годов XIX в. в Германии в электротехнической компании AEG инженером
русского происхождения Михаилом Осиповичем Доливо-Добровольским. Эта электрическая машина была создана как составная часть системы трехфазных электрических цепей переменного тока, получивших очень широкое распространение в электроэнергетике. В настоящее время трехфазные цепи составляют основу большинства мировых систем производства и передачи электрической энергии.
Трехфазная электрическая система состоит из трех силовых проводов — трех фаз и так называемого нулевого провода (рис. 1.1). Каждый из проводов трех фаз вместе с нулевым проводником представляет собой двухпроводную однофазную электрическую цепь переменного тока. Но переменные напряжения в этих трех однофазных цепях не синхронны, а сдвинуты друг относительно друга во времени (по фазе) строго на 1/3 периода (рис. 1.2). При таком равномерном сдвиге по фазе трех одинаковых по амплитуде фазных переменных напряжений их алгебраическая сумма всегда равна нулю.
Режим работы трехфазной электрической цепи принято характеризовать следующими основными параметрами (см. рис. 1.1):
.фазный ток—ток, протекающий по фазам A, B, C;
.фазное напряжение — напряжение между фазами A, B, C и нулевым проводом ;

Рис. 1.2. Фазные напряжения трехфазной электрической цепи

Линейное напряжение—напряжение между парами фаз A—B, B—C, C—A.
.частота напряжения и тока.
Нагрузка трехфазной электрической цепи в общем случае может быть как трехфазной (например, промышленные электрические машины), так и однофазной (бытовые устройства, освещение).
Трехфазные нагрузки обычно потребляют равную мощность по каждой из фаз. Поэтому фазные токи, которые протекают по фазам под действием трех одинаковых по амплитуде фазных переменных напряжений, также в сумме всегда равны нулю. Это означает, что по нулевому проводу ток не протекает. И поэтому для подключения трехфазных нагрузок к питающей трехфазной цепи нулевой провод часто не используют.
Однофазные нагрузки обычно включают между фазами и нулевым проводом. При этом суммарные мощности нагрузок по каждой
из фаз могут различаться. В этом случае сумма фазных токов трехфазной цепи уже не будет равна нулю и по нулевому проводу будет протекать ток, который зависит от разности мощностей нагрузок фаз.
Физические основы образования вращающего момента у асинхронного двигателя аналогичны традиционным двигателям постоянного тока: если проводник с электрическим током поместить в магнитное поле, на этот проводник начинает действовать сила, направленная перпендикулярно проводнику и поперечно магнитному полю (рис. 1.3).

И у асинхронного двигателя, и у двигателя постоянного тока магнитное поле создают обмотки статора. А ток, образующий вращающий момент при взаимодействии с магнитным полем, протекает по проводникам обмотки ротора.

Асинхронный двигатель отличается от двигателя постоянного тока
двумя принципиальными особенностями:
.магнитное поле статора у асинхронного двигателя—вращающееся, а не неподвижное;
.в асинхронном двигателе в обмотку ротора электрический ток поступает из внешних цепей бесконтактным трансформаторным способом, а не через скользящий контакт между щетками и коллектором.
Отсутствие скользящего электрического контакта между цепями статора и ротора у асинхронных двигателей и является основной причиной широкой популярности таких электрических машин. В целом отсутствие коллектора дает следующие важные практические преимущества:
.упрощение конструкции двигателя;
.повышение надежности двигателя;
.повышение мощности двигателя при тех же габаритах (так как коллектор и щетки в двигателе постоянного тока занимают достаточно много места, в асинхронном двигателе с теми же внешними размерами этот объем можно использовать для увеличения активной электромагнитной части, повышая тем самым мощность и вращающий момент);
.снятие жестких ограничений по рабочему напряжению (так как именно коллектор в двигателе постоянного тока часто лимитирует уровень предельного рабочего напряжения, а соответственно, и мощность).
Вращающееся магнитное поле принципиально необходимо для работы асинхронного двигателя. Только в этом случае процесс трансформации электрической энергии из обмотки статора в обмотку ротора будет формировать вращающий момент на валу двигателя.
Стационарное переменное магнитное поле статора также будет наводить ЭДС в обмотке ротора асинхронного двигателя, как в обычном трансформаторе, и ток в обмотке ротора появится. Но электромагнитная сила, действующая при этом на проводники ротора, также переменная. Она будет создавать вибрации, а не устойчивый вращающий момент определенного направления.
Вращающееся магнитное поле в асинхронном двигателе индуцирует в проводниках обмотки ротора такие токи, которые образуют электромагнитные силы, действующие всегда в одном направлении. Эти силы в сумме и образуют вращающий момент на валу двигателя независимо от того, стоит ротор двигателя на месте или вращается.
Механизм формирования вращающего момента асинхронного двигателя под действием вращающегося магнитного поля имеет две важные особенности.

Первая особенность заключается в следующем. В соответствии с фундаментальными законами электротехники существуют два вида процессов, при которых в некоем проводнике наводится ЭДС индукции:
.изменение напряженности магнитного поля, пронизывающего проводник;
.движение проводника в стабильном магнитном поле.
Иными словами, если проводник просто держать неподвижно в стабильном магнитном поле, ЭДС в этом проводнике не появляется.
Именно такая ситуация возникает в асинхронном двигателе, когда
скорость вращения ротора равна скорости вращения магнитного поля.
При таком синхронном вращении ротора и магнитного поля перемещение проводников обмотки ротора относительно магнитного поля будет отсутствовать и напряженность магнитного поля, пронизывающего каждый из проводников, всегда будет одна и та же. В таком режиме ЭДС индукции в проводниках обмотки ротора не появляется, ток в обмотке ротора не возникает и вращающий момент двигателя равен нулю.
Именно из-за этого свойства такой двигатель и получил наименование «асинхронный», потому что он развивает вращающий момент на валу, только если вращение ротора «отстает» от вращения магнитного поля.
Вторая особенность заключается в следующем. Если частота вращения ротора по каким-либо причинам становится больше частоты вращения магнитного поля, двигатель автоматически переходит в режим генераторного торможения. Это происходит вследствие того, что, когда вращение проводников обмотки ротора начинает опережать вращение магнитного поля, полярность ЭДС индукции и направление тока в этих проводниках меняются на противоположные. Соответственно меняют направление вращения на противоположное электромагнитные силы, действующие на проводники обмотки ротора.
Сформировать вращающееся магнитное поле статора можно, например, следующим образом. Если взять статор шестиполюсного двигателя постоянного тока и включать пары противоположных полюсов поочередно, то в этом статоре появится вращающееся магнитное поле (рис. 1.4).
Такой же эффект может быть достигнут, если три пары полюсов запитать от трехфазной цепи. Как было сказано выше, в такой цепи напряжения и токи фаз равномерно сдвинуты друг относительно друга по времени. Это означает, что максимального значения токи в фазах достигают поочередно. Соответственно и максимальная напряженность магнитного поля в парах магнитов на рис. 1.4 будет возникать поочередно, что эквивалентно поочередному включению пар магнитов.
Скорость вращения магнитного поля статора, показанного на рис.
1.4, зависит от того, как часто переключаются пары магнитов. При питании же от трехфазной сети скорость вращения магнитного поля статора определяется частотой тока. У статора, показанного на рис. 1.4, на
каждую фазу приходится одна пара полюсов. Это означает, что магнитное поле будет делать один полный оборот за время, равное одному пе риоду питающего тока. Например, при частоте тока обмотки статора 50 Гц скорость вращения магнитного поля в таком статоре составит 50 об/с, или 3000 об/мин.

Рис. 1.4. Формирование вращающегося магнитного поля статора двигателя с шестью полюсами
Если на статоре разместить не 6, а 12 магнитов и повторить очередность чередования фаз два раза за один полный механический оборот, то скорость вращения поля снизится в два раза и при частоте тока статора 50 Гц составит 25 об/с, или 1500 об/мин, и т. д.
В принципе, можно сделать асинхронный двигатель не только трехфазным, но и четырехфазным, пятифазным и т. д. Но это уже мало что дает в практическом смысле и заметно усложняет обмотку статора. Поэтому вместе с системой трехфазного тока классической стала конструкция именно трехфазного асинхронного двигателя.
Существуют также одно- и двухфазные асинхронные двигатели, но такие электрические машины имеют специфичные характеристки и используются только в маломощных бытовых устройствах.
Трехфазный асинхронный двигатель является электрически и магнитно симметричным по фазам. Обмотки трех фаз имеют идентичные
параметры и развивают одинаковую мощность. В этом случае, как говорилось выше, нулевой провод трехфазной питающей цепи не требуется, и поэтому статоры асинхронных двигателей, как правило, имеют только фазные выводы. При этом обмотки магнитных полюсов трех фаз обычно соединяют двумя способами: «звездой» или «треугольником» (рис. 1.5).

Рис. 1.5. Схемы соединения фазных обмоток асинхронного двигателя

Рис. 1.6. Общий вид статора асинхронного тягового двигателя
Обмотка ротора асинхронного двигателя является короткозамкнутой, так как никаких других элементов в ее цепи нет. Конечно, эта обмотка всегда имеет определенные активное сопротивление и индуктивность, как любая обмотка вообще.
В современных асинхронных двигателях статор не делают с явными полюсами, как показано на рис. 1.4. Чтобы более эффективно использовать объем, обмотку статора в асинхронном двигателе распределяют равномерно в пазах (рис. 1.6), так же как это делают на роторе коллекторного двигателя постоянного тока. Если представить статор такой машины в плоском развернутом виде,
то размещение проводников обмотки трехфазного двигателя с шестью фазными полюсами будет выглядеть, как показано на рис. 1.7. На этом рисунке обмотка каждого из полюсов условно показана размещенной в двух пазах.
Реально в асинхронном двигателе на каждый полюс обычно делают больше пазов и витков для повышения плавности распределения магнитного потока вдоль воздушного зазора между статором и ротором.

Рис. 1.7. Упрощенная развернутая схема обмотки статора асинхронного двигателя

Рис. 1.8. Общий вид ротора асинхронного тягового двигателя
Обмотку ротора асинхронного двигателя делают также в виде расположенных в пазах проводников, замкнутых между собой с торцов кольцами (рис. 1.8). Такая конструкция обмотки ротора получила название «беличья клетка». Так как все проводники обмотки ротора замкнуты между собой накоротко, изолировать проводники ротора от стального тела ротора не имеет смысла. Это дополнительно упрощает конструкцию двигателя и повышает его надежность.

Тяговый электродвигатель

Тяговый электродвигатель (ТЭД) - электрический двигатель , предназначенный для приведения в движение транспортных средств (электровозов , электропоездов , тепловозов , трамваев , троллейбусов , электромобилей , электроходов , большегрузных автомобилей с электроприводом , танков и машин на гусеничном ходу с электропередачей, подъемно-транспортных машин, самоходных кранов и т. п.). Вращающиеся тяговые электродвигатели регулируются ГОСТ 2582-81 (кроме аккумуляторных погрузочно-разгрузочных машин, электротягачей, электротележек и теплоэлектрических автотранспортных систем).

Основное отличие ТЭД от обычных электродвигателей большой мощности заключается в условиях монтажа двигателей и ограниченном месте для их размещения. Это привело к специфичности их конструкций (ограниченные диаметры и длина, многогранные станины, специальные устройства для крепления и т. п.).

Тяговые двигатели городского и железнодорожного транспорта, а также двигатели мотор-колес автомобилей эксплуатируются в сложных погодных условиях, во влажном и пыльном воздухе . Также в отличие от электродвигателей общего назначения ТЭД работают в самых разнообразных режимах (кратковременных, повторно-кратковременных с частыми пусками), сопровождающихся широким изменением частоты вращения ротора и нагрузки по току (при трогании с места может в 2 раза превышать номинальный). При эксплуатации тяговых двигателей имеют место частые механические, тепловые и электрические перегрузки, тряска и толчки. Поэтому при разработке их конструкции предусматривают повышенную электрическую и механическую прочность деталей и узлов, теплостойкую и влагостойкую изоляцию токоведущих частей и обмоток, устойчивую коммутацию двигателей. Кроме того ТЭД рудничных электровозов должны удовлетворять требованиям, относящимся к взрывозащищенному электрооборудованию.

Тяговые двигатели должны иметь характеристики, обеспечивающие высокие тяговые и энергетические свойства (особенно КПД) подвижного состава.

Развитие полупроводниковой техники открыло возможности перехода от двигателей с электромеханической коммутацией к бесколлекторным машинам с коммутацией при помощи полупроводниковых преобразователей.

Из-за тяжелых условий работы и жестких габаритных ограничений тяговые двигатели относят к машинам предельного использования.

Классификация

Тяговые электродвигатели классифицируют по:

Эксплуатационные свойства

Эксплуатационные свойства тяговых двигателей могут быть универсальными , то есть присущими всем видам ЭПС , и частными , то есть присущими ЭПС определенных видов. Некоторые эксплуатационные свойства могут быть взаимопротиворечивыми.

Пример частных свойств: высокая перегрузочная способность двигателей, необходимая для получения высоких пусковых ускорений пригородных электропоездов и поездов метрополитена ; возможность продолжительной реализации наибольшей возможной силы тяги для грузовых электровозов; низкая регулируемость ТЭД пригородных поездов и поездов метрополитена в сравнении с ТЭД электровозов.

Устройство ТЭД

Тяговый электродвигатель, по сути, представляет собой электродвигатель с передачей вращающего момента на движитель транспортного средства (колесо, гусеницу или гребной винт).

Существенным моментом использования ТЭД является необходимость обеспечения плавного пуска-торможения двигателя для управления скоростью транспортного средства. Вначале регулирование силы тока осуществлялось за счёт подключения дополнительных резисторов и изменения схемы коммутации силовых цепей. С целью уйти от бесполезной нагрузки и повысить КПД стали применять импульсный ток, регулировка которого не требовала резисторов. В дальнейшем стали использоваться электронные схемы, обслуживаемые микропроцессорами . Для управления данными схемами (вне зависимости от их устройства) применяются контроллеры, управляемые человеком, определяющим требуемую скорость транспортного средства.

Значение сопротивления изоляции обмоток устанавливают в соответствующей нормативно-технической документации или в рабочих чертежах. Для городского электротранспорта после испытаний на влагостойкость сопротивление должно быть не менее 0,5 МОм .

Вибрация, создаваемая ТЭД, должна устанавливаться по ГОСТ 20815 в соответствующей нормативно-технической документации .

Характеристики

Тяговый электродвигатель НБ-418К: 1 - остов; 2 - добавочный полюс; 3 - сердечник якоря; 4 - коробка якоря; 5, 11 - лобовые части якоря; 6 - коллектор; 7, 9 - подшипниковые щиты; 8 - вал; 10 - подшипник; 12 - компенсационная обмотка

Как правило, определяются следующие характеристики ТЭД:

  • Электромеханические (типовые)
    • зависимости от тока якоря
      • частоты вращения
      • вращающего момента
  • Электротяговые
    • зависимости от тока якоря
      • окружной скорости движущих колёс ПС
      • силы тяги
      • КПД на ободе движущих колёс ПС
  • Тяговые
  • Тепловые (зависимость температур отдельных частей ТЭД от времени при различной силе тока);
  • Аэродинамические (характеризуют обдув двигателя).

Остов

В ТЭД постоянного и пульсирующего тока остов выполняет функции массивного стального магнитопровода (статора) и корпуса - основной несущей и защитной части машины.

Остовы четырехполюсных двигателей чаще имеют поперечное сечение магнитного ярма и выполняются гранеными. Это обеспечивает использование габаритного пространства до 91-94 %. Обработка такого остова сложна, а масса превышает массу цилиндрического остова. Технология изготовления цилиндрических остовов проще, а точность изготовления более высока. Однако использование габаритного пространства при цилиндрической форме остова не превышает 80-83 %. На остове крепят главные и добавочные полюса, подшипниковые щиты, моторно-осевые подшипники (при опорно-осевом подвешивании двигателя). Для двигателей большой мощности все чаще применяют остовы цилиндрической формы.

Длина двигателя по наружным поверхностям подшипниковых щитов при ширине колеи 1520 мм равна 1020-1085 мм в случае двусторонней передачи и 1135-1185 мм в случае односторонней.

Различают четырехполюсные двигатели с вертикально-горизонтальным и диагональным расположением главных полюсов. В первом случае обеспечивается наиболее полное использование пространства (до 91-94 %), но масса остова больше, во втором это пространство используется несколько хуже (до 83-87 %), но заметно меньше масса. Остовы цилиндрической формы при низком использовании габаритного пространства (до 79 %), но при равных условиях имеют минимальную массу. Цилиндрическая форма остова и диагональное расположение полюсов обеспечивают почти одинаковую высоту главных и добавочных полюсов.

У бесколлекторных ТЭД сердечник статора полностью шихтован - набран и спрессован из изолированных листов электротехнической стали. Его скрепляют специальными стяжками-шпонками, закладываемыми в наружные пазы в нагретом состоянии. Функции несущей конструкции выполняет литой или сварной корпус, в котором закреплен комплект статора.

Остовы ТЭД обычно изготавливают литыми из низкоуглеродистой стали 25Л. Только для двигателей подвижного состава электротранспорта с использованием реостатного торможения как рабочего применяют сталь с большим содержанием углерода , обладающего большей коэрцитивной силой. На двигателях НБ-507 (электровоз ВЛ84) применены сварные остовы. Материал остова должен обладать высокими магнитными свойствами, зависящими от качества стали и отжига , иметь хорошую внутреннюю структуру после литья: без раковин, трещин , окалины и других дефектов. Предъявляют также высокие требования к качеству формовки при отливке остова.

Коллектор

Подшипниковые щиты

Линейные тяговые двигатели

При скоростях движения более 300-384 км/ч сильно снижается коэффициент сцепления колес с рельсами, а следовательно реализовать необходимую силу тяги через контакт колесо-рельс становится затруднительным. Для решения этой проблемы для высокоскоростного наземного транспорта применяют линейные тяговые двигатели .

Частота вращения

Для расчета прочности элементов двигателя установлена испытательная частота вращения

  • для двигателей, включенных постоянно параллельно - n исп = 1,25·n max
  • для двигателей, включенных постоянно последовательно - n исп = 1,35·n max

Соотношение скоростей

где n max и n ном - частоты вращения максимальная и номинальная соответственно;

V max и v ном - соответственно конструкционная и эксплуатационная скорости подвижного состава.

Соотношение скоростей для электровозов составляет , для тепловозов -

Подвешивание тяговых электродвигателей и тяговая передача

Номинальные ток, напряжение, частоту вращения и др. характеристики при необходимости корректируют после определения .

Вентиляция ТЭД

Вентиляция

На электровозах применяется интенсивная независимая вентиляция . Для нагнетания воздуха используется специальный мотор-вентилятор, установленный в кузове локомотива. Предельные допускаемые превышения температур для данного типа вентиляции не должны превышать указанных в таблице .

Класс нагревостойкости изоляции Режим работы Части электрической машины Метод измерения температуры Предельное допускаемое превышение температуры, °C, не более
A Продолжительный и повторно-кратковременный Обмотки якоря и возбуждения Метод сопротивления 85
Коллектор Метод термометра 95
Часовой, кратковременный Обмотки якоря и возбуждения Метод сопротивления 100
Коллектор Метод термометра 95
E Продолжительный, повторно-кратковременный, часовой, кратковременный Обмотки якоря Метод сопротивления 105
Обмотки возбуждения 115
Коллектор Метод термометра 95
B Обмотки якоря Метод сопротивления 120
Обмотки возбуждения 130
Коллектор Метод термометра 95
F Обмотки якоря Метод сопротивления 140
Обмотки возбуждения 155
Коллектор Метод термометра 95
H Обмотки якоря Метод сопротивления 160
Обмотки возбуждения 180
Коллектор Метод термометра 105

На электропоездах из-за отсутствия места в кузове применяют систему самовентиляции ТЭД. Охлаждение в таком случае осуществляется вентилятором установленном на якоре тягового двигателя.

Соотношение между токами или мощностями номинальных режимов одного и того же двигателя зависит от интенсивности его охлаждения и называется коэффициентом вентиляции

При чём чем ближе к 1, тем интенсивнее вентиляция.

Предельная допускаемая температура подшипников электрических машин должна соответствовать ГОСТ 183 .

Очистка воздуха

Для вентиляционных систем электроподвижного состава обеспечение чистоты охлаждающего воздуха имеет важное значение. Воздух, поступающий в вентиляционную систему двигателей, содержит пыль, а также металлические частицы, образующиеся при истирании тормозных колодок. Зимой также может захватываться 20-25 г/m³ снега. Полностью избавиться от этих загрязнений невозможно. Сильное загрязнение проводящими частицами приводит к повышенному износу щеток и коллектора (из-за повышенного нажатия щеток). Ухудшается состояние изоляции и условия ее охлаждения.

Для электровозов наиболее приемлемы жалюзийные инерционные воздухоочистители с фронтальным подводом воздушного потока к плоскости решетки, с горизонтальным (малоэффективна, устанавливалась на ВЛ22м , ВЛ8 , ВЛ60к) или вертикальным расположением рабочих элементов. Наибольшей эффективностью по задержанию капельной влаги обладает вертикальная лабиринтная решетка с гидравлическим затвором . Общим недостатком жалюзийных воздухоочистителей является низкая эффективность очистки воздуха.

В последнее время получают распространение воздухоочистители, обеспечивающие аэродинамическую (ротационную) очистку охлаждающего воздуха (устанавливались на ВЛ80р, ВЛ85).

КПД

Коэффициент полезного действия для тяговых двигателей пульсирующего тока определяется отдельно на постоянном токе и на пульсирующем .

где - номинальная (на валу) мощность двигателя,
- подведенная мощность двигателя,
- суммарные потери в двигателе,
- напряжение на зажимах двигателя,
- номинальный ток.

где - пульсационные потери.

Для ТЭД постоянного тока достаточно только КПД на постоянном токе.

Типовые характеристики

В качестве типовых характеристик принимают :

  • усредненные характеристики, которые изготовитель должен представить после испытания первых 10 машин установочной серии,
  • типовые характеристики электрических машин, одна или несколько серий которых были ранее изготовлены.

Для получения типовой характеристики КПД и типовых характеристик тяговых двигателей городского транспорта должны быть испытаны первые 4 машины первой партии .

Конструктивная и эксплуатационная перегрузка

Предельные значения тока и мощности определяются коэффициентом конструктивной перегрузки

где I max и P max - максимальные ток и напряжение соответственно;

I nom и P nom - номинальные ток и напряжение соответственно.

Для условий эксплуатации принимают коэффициент эксплуатационной перегрузки

где I eb и P eb - соответственно наибольшие расчетные токи и мощность в условиях эксплуатации.

Разницу между значениями К per и К pe выбирают такой, чтобы при предельных ожидаемых возмущениях значения тока и мощности не превышали соответственно I max и P max .

Сферы применения

Электровоз ЭП1

ТЭД локомотива со снятыми шапками моторно-осевых подшипников

  • Локомотивы (электровозы , тепловозы с электропередачей);
  • Электропоезда и высокоскоростной наземный транспорт (ВСНТ);
  • Бронетехника и другие машины на гусеничном ходу ;
  • Электромобили и большегрузные автомобили с электроприводом (в том числе подъемно-транспортные машины и самоходные краны);
  • Теплоходы с электроприводом (дизель-электроходы), атомоходы , подводные лодки ;
  • Городской электротранспорт : трамваи , троллейбусы ;

В случае использования электрической передачи на теплоходах, тепловозах, тяжёлых грузовиках и гусеничных машинах дизель вращает генератор питающий ТЭД, приводящий в движение гребные винты или колёса напрямую, либо посредством механической передачи .

На тяжёлых грузовиках ТЭД может встраиваться в само колесо. Такая конструкция получила название мотор-колесо . Попытки применения мотор-колёс предпринимались также на автобусах, трамваях и даже легковых автомобилях.

Заводы

Заводы-изготовители

  • Россия
    • Сарапульский электрогенераторный завод - производство тяговых электродвигателей и электродвигателей гидронасоса для электропогрузчиков и электротележек российского и болгарского производства сайт завода
    • Завод «Электросила» в Санкт-Петербурге - ТЭД для локомотивов
    • Псковский электромашиностроительный завод - ТЭД для городского электротранспорта
    • Новочеркасский электровозостроительный завод - ТЭД для локомотивов
    • Завод «Сибэлектропривод» в Новосибирске - ТЭД для большегрузных самосвалов , электропоездов , тракторов , морских судов
    • Завод «Татэлектромаш» в г. Набережные Челны - ТЭД для большегрузных самосвалов «БелАЗ», электропоездов, городского транспорта
    • ОАО «Карпинский электромашиностроительный завод» в г. Карпинск - тяговые электродвигатели постоянного тока карьерных и шагающих экскаваторов , тяговый электродвигатель постоянного тока ДПТ 810 магистрального электровоза 2ЭС6, имеются разработки по ТЭД постоянного тока тепловозов
  • Украина
    • «Электротяжмаш » в Харькове - ТЭД для локомотивов
    • «Смелянский электромеханический завод » (г. Смела Черкасской обл) - ТЭД для локомотивов
  • Латвия
    • Рижский электромашиностроительный завод - ТЭД для электропоездов
  • Индия
    • Diesel-Loco Modernisation Works - ТЭД для локомотивов
  • Польша
    • EMIT S.A - ТЭД для электропоездов и городского электротранспорта

Ремонтные заводы

Технические характеристики некоторых ТЭД

Данные представлены для общего ознакомления и сравнения ТЭД. Подробные характеристики, размеры и особенности конструкции и эксплуатации можно найти в рекомендуемой литературе и других источниках.

ТЭД
Тип двигателя Мощность, кВт Напряжение номинальное (максимальное), В Частота вращения номинальная(максимальная), об/мин КПД, % Масса, кг Длина двигателя, мм Диаметр (ширина/высота) двигателя, мм Способ подвешивания Подвижной состав
Тяговые двигатели тепловозов
ЭД-104 307 - - - 2850 - - Опорно-осевое ТЭ10 , 2ТЭ10
ЭД-120А 411 512 (750) 657 (2320) 91,1 3000 - - Опорно-рамное -
ЭД-121 411 515 (750) 645 (2320) 91,1 2950 1268 825/825 Опорно-рамное ТЭМ12 , ТЭП80
ЭД-120 230 381 (700) 3050 87,5 1700 - - Опорно-рамное -
ЭД-108 305 476 (635) 610 (1870) - 3550 - - Опорно-рамное ТЭП60 , 2ТЭП60
ЭД-108А 305 475 (635) 610 (1870) 91,7 3350 1268 -/1525 Опорно-рамное -
ЭД-125 410 536 (750) 650 (2350) 91,1 3250 - - Опорно-осевое -
ЭД-118 305 463 (700) 585 (2500) 91,6 3100 1268 827/825 Опорно-осевое ТЭ114
ЭДТ-200Б 206 275 (410) 550 (2200) - 3300 - - Опорно-осевое ТЭ3 , ТЭ7
ЭД-107Т 86 195 (260) 236 (2240) - 3100 - - Опорно-осевое ТЭМ4
ЭД-121A 412 780 (2320) - 2950 - - - -
ЭД-135Т 137 530 (2700) - 1700 - - - Тепловозы узкой колеи
ЭД-150 437 780 (2320) - 2700 - - - ТЭП150
Тяговые двигатели электровозов (магистральные и карьерные) по
ТЛ2К1 670 1500 790 93,4 5000 - - Опорно-осевое ВЛ10 У, ВЛ11 постоянного тока
НБ-418К6 790 950 890 (2040) 94,5 4350 - 1045 Опорно-осевое ВЛ80 Р, ВЛ80Т, ВЛ80К, ВЛ80С переменного тока
НБ-514 835 980 905 (2040) 94,1 4282 - 1045 Опорно-осевое ВЛ85 переменного тока
ДТ9Н 465 1500 670 92,6 4600 - - Опорно-осевое Агрегаты тяговые ПЭ2М , ОПЭ1 Б постоянного и переменного тока
НБ-511 460 1500 670 93 4600 - - Опорно-осевое Агрегаты тяговые ПЭ2М, ОПЭ1Б постоянного и переменного тока
НБ-507 930 1000 670 (1570) 94,7 4700 - - Опорно-рамное ВЛ81 и ВЛ85 переменного тока
НБ-412П 575 1100 570 - 4950 - 1105 Опорно-осевое Агрегат тяговый ОПЭ1
НБ-520 800 1000 1030(1050) - - - - Опорно-рамное ЭП1 переменного тока
НТВ-1000 1000 1130 1850 94,8 2300 1130 710/780 Опорно-рамное ЭП200
НБ-420А 700 - 890/925 - 4500 - - Опорно-рамное ВЛ82
НБ-407Б 755 1500 745/750 - 4500 - - Опорно-осевое ВЛ82м
Тяговые двигатели городского транспорта
ДК117М/А 112/110 375/750 1480 (3600) - 760/740 912 607/603 - Метро-вагон "И" /81-714 , 81-717
УРТ-110А 200 - 1315 (2080) - 2150 - - - Метро-вагон "Яуза" (также используется на электропоездах ЭР2)
ДК210А3/Б3 110 550 1500 (3900) - 680 997 528 - Троллейбусы ЗиУ-682 В/ЗиУ-У682В
ДК211А/Б 150 550 1750/1860 (3900) - 900 1000 590 - Троллейбусы ЗиУ-684/ЗиУ-682В1
ДК211АМ/А1М 170/185 550/600 1520/1650 (3900) 91,1 900 1000 590 - Троллейбусы ЗиУ-684
ДК211БМ/Б1М 170/185 550/600 1700/1740 (3900) 91 880 1000 590 - Троллейбусы

Бесколлекторные тяговые двигатели

Около 8-10 лет назад масса поезда (весовая норма) ограничивалась условиями сцепления, т. е. достигнутым значением расчетного коэффициента сцепления. Поэтому не так остро ставился вопрос о существенном повышении силы тяги, а следовательно, и мощности тяговых двигателей электровозов. Исследования и опытная эксплуатация ряда новых устройств показали, что имеются большие возможности повышения расчетного коэффициента сцепления. Этого можно достичь, применив независимое возбуждение, а также осуществив автоматическое выравнивание нагрузок тяговых двигателей. О других возможностях повышения коэффициента сцепления будет рассказано ниже.

Но дальнейшее повышение мощности тяговых двигателей электровозов, необходимой для реализации более высокого расчетного коэффициента сцепления, осуществить все трудней. Этому препятствуют прежде всего размеры тягового двигателя: длина его ограничена расстоянием между бандажами колесных пар, диаметр - расстоянием между осью колесной пары и валом двигателя - централью Ц (см. рис. 3). До сих пор при наличии жестких габаритных ограничений размеров двигателей мощность их повышали путем применения более теплостойких изоляционных материалов, усиления охлаждения, увеличения числа пар полюсов, устройства компенсационной обмотки, выбора оптимального напряжения для тяговых двигателей электровозов переменного тока.

С повышением мощности все напряженнее работает коллекторно-щеточный узел. Его состоянием в значительной мере определяется продолжительность работы электровоза между осмотрами и ремонтами. Повышение мощности тяговых двигателей встречает все больше препятствий и не способствует увеличению их надежности и к. п. д. Поэтому вполне понятно стремление создать мощный бесколлекторный тяговый двигатель.

Электровозы с асинхронными тяговыми двигателями . На протяжении всей истории создания и совершенствования электровозов было много попыток использовать самый простой и дешевый асинхронный двигатель для целей тяги. До недавнего времени этого не удавалось сделать, так как частоту его вращения можно экономично регулировать только изменением частоты питающего тока. Применяемые ранее для этого электромашинные преобразователи были тяжелыми. Появление тиристоров открыло путь для создания легкого и надежного преобразователя частоты.

Устройство асинхронного двигателя, как уже отмечалось, несложно. Он имеет неподвижный статор и вращающийся ротор (рис. 75). Различают асинхронные двигатели: с короткозамкнутым ротором и с фазовым ротором. В качестве тяговых используют асинхронные двигатели с короткозамкнутым ротором. Сердечник такого ротора, как и статора, собирают из листов электротехнической стали. Обмотка ротора состоит из медных стержней, расположенных в пазах сердечника и замкнутых с торцов кольцами. Обмотка без сердечника ротора представляет собой так называемое "беличье колесо".

В пазах статора уложены три обмотки, сдвинутые одна относительно другой на 120°. Эти обмотки обычно соединяют звездой. При включении обмоток в трехфазную цепь по каждой из них проходит переменный ток и создается три переменных магнитных потока. Эти потоки, складываясь, образуют результирующий поток, вращающийся с частотой 3000 об/мин при одной паре полюсов на каждую фазу. Вращающийся магнитный поток статора двигателя, пересекая обмотку ротора, индуктирует в ней э. д. с. Под действием э. д. с. в обмотке ротора проходит ток, создающий собственный магнитный поток. Магнитные потоки статора и ротора взаимодействуют, в результате чего ротор начинает вращаться.

Частота вращения ротора несколько меньше частоты вращения магнитного потока статора, иначе силовые линии не пересекали бы обмотку ротора. Разность этих частот вращения называется скольжением. Увеличивая число пар полюсов, можно получить другие частоты вращения магнитного потока: 1500, 1000, 750 об/мин и т. д. Частота вращения ротора будет несколько меньше этих значений.

Обычно скольжение составляет 1-3% синхронной частоты. Следовательно, если изменять частоту питающего напряжения в широких пределах и тем самым синхронную частоту, вместе с ней будет изменяться и частота вращения ротора. Но, помимо частоты, необходимо регулировать и напряжение, подводимое к асинхронному двигателю для того, чтобы получить тяговую характеристику примерно такую, как при использовании двигателей постоянного тока с последовательным возбуждением.

Регулирование напряжения осуществляется, как и на отечественных электровозах переменного тока, переключением вторичной обмотки тягового трансформатора с помощью главного контроллера ГК (рис. 76) ступенями. Затем в выпрямительной установке В напряжение выпрямляется и подается на инвертор И. В выпрямителе осуществляется плавное регулирование напряжения, подводимого к инвертору И.

Отпирая и запирая тиристоры инверторной установки в определенной последовательности, получают трехфазное напряжение, которое подводится к обмотке статора асинхронного двигателя АД. Напомним, что к обычным асинхронным двигателям подводится переменное трехфазное напряжение, а следовательно, и ток, изменяющийся синусоидально. При этом каждая фаза сдвинута относительно другой на 120°, как показано на рис. 77. Для наглядности изменение напряжения каждой фазы показано на отдельных осях. При формировании трехфазного напряжения на электровозе с асинхронными двигателями переключаемые вентили инвертора создают напряжение ступенчатой формы в каждой фазе.

Частота напряжения, подводимого к асинхронному двигателю, регулируется изменением частоты переключения этих вентилей.

В инверторе предусмотрено специальное устройство, надежно восстанавливающее управляющие свойства тиристоров при срыве инвертирования. Реверсирование тяговых двигателей осуществляют, переключая цепи управления тиристоров инвертора, так как для изменения направления вращения асинхронного двигателя достаточно поменять местами любые две подводимые фазы.

На основе разработок научно-исследовательских и учебных институтов на Новочеркасском электровозостроительном заводе построен электровоз переменного тока с асинхронными тяговыми двигателями ВЛ80 а. Электровоз создан на базе восьмиосного электровоза ВЛ80 К. Мощность каждого тягового двигателя составляет 1200 кВт, т. е. в 1,5 раз больше, чем коллекторного двигателя электровоза ВЛ80 К.

Не исключена возможность создания тягового привода с асинхронным двигателем без редуктора. В этом случае ротор асинхронного двигателя монтируют непосредственно на оси колесной пары, а статор имеет разъемную форму.

Электровозы с вентильными синхронными двигателями . В качестве бесколлекторных тяговых двигателей на электровозе можно использовать синхронные двигатели со статическими (вентильными) преобразователями - так называемые вентильные двигатели.

Поясним принцип работы вентильного двигателя. На его статоре расположена трехфазная обмотка, а на роторе - обмотка возбуждения постоянного тока (рис. 78). Начало и конец обмотки возбуждения соединены с двумя кольцами, электрически изолированными одно от другого. Фазные обмотки статора соединены в звезду; начала их подключены к преобразователю - инвертору И (или источнику постоянного тока). Инвертор И питается от выпрямительной установки В, подключенной к вторичной обмотке тягового трансформатора. Если, например, в какой-либо момент времени открыты тиристоры А1 и Х2 инвертора, ток от выпрямителя В пройдет через тиристор А1, обмотки статора I и II, тиристор Х2, обмотку возбуждения ОВ и возвратится в выпрямительную установку. При указанном стрелками направлении тока в обмотках I, II и обмотке возбуждения результирующий магнитный поток статора, взаимодействуя с потоком обмотки возбуждения, создаст вращающий момент, и ротор повернется по часовой стрелке. Переключая в, определенном порядке выводы статорной обмотки, можно обеспечить непрерывное вращение ротора.

Таким образом, по принципу действия вентильный двигатель подобен машине постоянного тока, где коллектор заменен системой силовых управляемых вентилей инверторной установки. Но в отличие от двигателя постоянного тока вентильный двигатель имеет только три коммутируемых вывода при трехфазной обмотке вместо нескольких сотен коллекторных пластин. Кроме того, обмотка возбуждения в вентильном двигателе стала подвижной, а якорь неподвижным. Вентильная коммутация тока в обмотках допускает значительное напряжение между выводами: до нескольких тысяч вольт. Напомним, что обычный механический коллектор удовлетворительно работает при напряжении между коллекторными пластинами не более 30-32 В. Переключение выводов статорной обмотки в необходимой очередности и соответственно изменение положения ротора осуществляет система управления, имеющая специальный датчик положения ротора.

Вентильный двигатель является многофазной машиной, обмотка якоря которой питается от преобразователя, управляемого синхронно с вращением ротора, снабженного обмоткой возбуждения. Таким образом, вентильный двигатель состоит из электрической машины, вентильного преобразователя и связывающей их системы управления.

Новочеркасским электровозостроительным заводом первоначально был построен опытный образец восьмиосного грузового электровоза ВЛ80 В с вентильными тяговыми двигателями. После испытания его была выпущена небольшая партия подобных электровозов для эксплуатационных испытаний. Электровозы оборудованы системой автоматического управления, действующей в режимах тяги и электрического торможения. На электровозе применено независимое возбуждение вентильных двигателей от выпрямителей-возбудителей, изменяющих ток возбуждения пропорционально току обмотки якоря двигателя. Ротор двигателя имеет шесть полюсов, ток к обмотке возбуждения подводится через два кольца и щетки. Частота вращения двигателя регулируется изменением подводимого напряжения. Напряжение вторичной обмотки, а следовательно, и выпрямительной установки регулируется примерно так же, как и на электровозах переменного тока с коллекторными двигателями. Исключено только встречное включение регулируемой и нерегулируемой обмоток трансформатора и несколько повышено их напряжение. После того, как к двигателям будет подведено номинальное напряжение, дальнейшее увеличение скорости осуществляется регулированием магнитного потока возбуждения.

На электровозах ВЛ80 В применена схема выпрямления и преобразования тока, несколько отличающаяся от изображенной на рис. 78. На рис. 78 показаны отдельные выпрямительная В и инверторная И установки, т. е. приведена так называемая схема с явным звеном постоянного тока. На электровозе ВЛ80 В эти две установки совмещены в общем устройстве.

Вентильные тяговые двигатели. Попытки использовать бесколлекторные двигатели переменного тока в электрической тяге делались еще в 30-х годах. Однако практическая возможность их применения появилась лишь после освоения промышленностью серийного выпуска силовых тиристоров и диодов, а также полупроводниковых элементов, позволяющих рационально выполнять системы управления и регулирования частоты питающего напряжения.

Вентильный тяговый двигатель по конструкции является синхронной машиной, у которой обмотка якоря расположена на статоре, а обмотка возбуждения - на роторе. Статор вентильного

двигателя (рис. 105) состоит из литого остова 7 и шихтованного из электротехнической стали Э1300 сердечника. Остов служит корпусом двигателя и внешне не отличается от остовов тяговых двигателей пульсирующего тока, а сердечник является магнитопроводом.

Сердечник 9 запрессован в остов между массивными кольцевыми боковинами 13. По наружному диаметру он стянут планками 8, приваренными к остову и к боковинам. От проворачивания сердечник удерживается шпонкой и шестью штифтами, вставленными в отверстия остова и иакладок. Для снижения потоков рассеяния и потерь между боковинами и пакетом установлены немагнитные изоляционные листы 12.

На наружной поверхности сердечника в 12 точках установлены датчики управления двигателем по положению магнитного потока. Каждый датчик имеет одну заданную и две считывающие одновит-ковые обмотки из провода ПСД диаметром 1,16 мм. Общий кабель от них выходит в коробку выводов, в которой через штепсельный разъем он соединен с устройством управления электровозом.

Пазы сердечника по его длине имеют скос на одно пазовое деление В них расположена двухслойная волновая обмотка. Корпусная изоляция ее катушек выполнена шестью слоями стеклослюди-нитовой ленты Л2С25КС 0,09 X 20 мм, наложенной вполуперекрышу. В пазах обмотка закреплена стеклопластовыми клиньями. Вывод статорной обмоткн до коробки выводов выполнен двойной шиной.

Роторы вентильных двигателей имеют различные конструктивные исполнения. На электровозе ВЛ80в-216 были установлены шестиполюсные вентильные двигатели с явнополюсным ротором.

Такое исполнение ротора технологически проще, однако в тепловом и механическом отношении материалы ротора и изоляции полюсных катушек оказались перегруженными. Связано это с тем, что м.д.с. возбуждения для вентильного двигателя с учетом реакции якоря и углов коммутации превышают м.д.с. холостого хода примерно в 1,8 раза, в то время, как в машине постоянного тока -

всего лишь в 1,2 раза Кроме того, из-за полюсных распорок ухудшался отвод тепла от катушек возбуждения.

Поскольку частоты вращения будут, по-видимому, возрастать по мере совершенствования подшипникового узла и редуктора, увеличится и теплонапряжен-ность в результате стремления вписать большую мощность в заданные габариты. Поэтому единственно возможной оказалась конструкция ротора с неявно выраженными полюсами.

В отличие от обычных синхронных машин у вентильного двигателя должна быть надежная демпферная обмотка со стержнями достаточного сечения для снижения сверхпереходного реактивного сопротивления двигателя. Стержни 15 демпферной обмотки медные, расположены равномерно по всей окружности ротора. Как показывают расчеты, такая конструкция демпферной обмотки позволяет получить сравнительно невысокие сверхпереходные индуктивные сопротивления якорной обмотки при допустимых потерях в стержнях, обусловленных процессом коммутации.

Для неявно выраженных полюсов ротора систему демпферных стержней можно расположить либо в верхней части пазов в виде крепящего обмотку возбуждения металлического клина, либо в отверстии зубцов. Первый способ технологически неудобен из-за трудности сваривания концов стержней (клиньев) на соединительных кольцах. Вторая конструкция демпферной клетки предпочтительнее, так как стержни могут быть приварены прямо к медному крайнему листу, специально выштампованному для этой цели. Преимущество такой конструкции еще и в том, что демпферная клетка может быть изготовлена на роторе до укладки обмотки возбуждения. Такую конструкцию ротора имеют вентильные восьмиполюсные двигатели НБ-601 электровоза ВЛ80в-661

Асинхронные тяговые двигатели. Максимальный вращающий момент двигателя

Мтах « С1Аи\/(2хг),

где См - постоянный коэффициент двигателя; и, - напряжение сети, х - индуктивное сопротивление.

Рис. 105. Продольный (а) и поперечный (б) разрезы тягового двигателя НБ-601 электровоза

/ - вал, 2 - роликовый подшипник, 3 - втулка якоря, 4 - подшипниковый щит; 5 - кольца; 6 - щеткодержатель; 7 - остов; 8-планки, 9- сердечник остова; 10- обмотка статора, // - сердечник ротора; 12-немагнитные прокладки (листы), 13-боковина сердечника статора, 14-букса, 15-

стержни демпферной обмотки

Асинхронный двигатель чувствителен к понижению напряжения. Например, при понижении напряжения на 10 % вращающий момент уменьшается на 19 %. В отличие от асинхронного двигателя промышленного исполнения тяговый асинхронный двигатель имеет ряд особенностей, вытекающих из условий его работы на локомотиве (питание от преобразователя частоты и фаз, вписывание значительной мощности в заданные, весьма сжатые габариты, обусловленные размерами ходовой части локомотива). На всех тяговых коллекторных двигателях электровозов с осевой вентиляцией 30 % воздуха проходит через воздушный зазор, осуществляя интенсивный отвод тепла с поверхностей якорей и полюсов.

У асинхронного тягового двигателя, чтобы уменьшить намагничивающий ток и повысить cos ф, стремятся воздушный зазор между статором и ротором выполнить по возможности минимальным по конструктивным и производственным условиям. В связи с этим у асинхронных двигателей при аксиальной независимой вентиляции не удается охладить поверхности ротора и статора, обращенные к воздушному зазору. Чтобы пропустить между статором и ротором больше охлаждающего воздуха, у тягового асинхронного двигателя используются надпазовые каналы (рис. 106, о),

через которые проходит около 30 % всего охлаждающего воздуха

Высота надпазового канала составляет (1,0 -г- 1,5) 6 пс, где Ь пс - ширина паза статора. В вентильном двигателе надпазовые каналы в статоре неприемлемы, так как они примерно на 40 % повышают индуктивное сопротивление рассеяния статора, что приводит к уменьшению вращающего момента. В асинхронном же двигателе увеличение индуктивного Сопротивления рассеяния обмотки статора не столь вредно, так как коммутация осуществляется принудительно.

В многополюсной машине активные материалы используются более эффективно, асинхронный двигатель работает с меньшими потерями, к.п.д его выше На параметры двигателя и электровоза в целом также влияют максимальное

f max И номинальное / ном Значения ЧЭСТО-

ты тока обмотки статора. Частота fmax =

Р" max/(60 + f 2), Где f2 = /CK -

частота тока ротора или скольжения, составляющая обычно 1-2 % от /тах, с достаточной точностью / тах = рп гаах/59.

Номинальная частота fH0M= pnmaJ (59к„), где kv - соотношение скоростей, обычно равный 2. Теоретически оптимальная частота fom = 100-г 150 Гц, а пределы регулирования частоты преобразователя от 1-2 до 200- 300 Гц. Однако существуют ограничения, связанные с применением подшипни-


Рис. 106 Расположение надпазовых каналов у тягового асинхронного двигателя (а) и кривые

/ - сердечник ротора, 2- обмотка ротора, 3-каиал, 4- надпазовый канал, 5 - обмотка статора,

6 - статор, 7 - текстолитовый клин


Таблица 4

Показатели Основные параметры часового режима тягового двигателя

Серия электровоза

Мощность на входе двигателя, кВт

Напряжение линейное, В

Ток фазный /фі, А

Коэффициент мощности

Частота тока, Гц

Наибольшая частота вращения.

Момент вращения на валу двигате-

Сила тяги на ободе колеса, кН

Скорость движения электровоза, км/ч

Класс изоляции

Число фаз

Число полюсов статора

Воздушный зазор, мм

Масса двигателя без зубчатой пере-

Расход охлаждающего воздуха,

*" Частота тока статора при продолжительном

режиме. *2 В

режиме я», = 890 об/мин *3 Мощ-

ность продолжительного режима Рм = 500 кВт *4 Масса меди двигателя 230 кг (623 кг у НБ-418К6); удельная масса двигателя 4,28 кг/кВт, удельная масса меди 0,255 кг/кВт, удельная масса стали 1,62 кг/кВт (0,74 у НБ-418К6) Число пазов ротора її = 80, а длина 455 мм; число пазов статора 1\ = 108, длина 465 мм. *5 Без редуктора

ков, для которых максимальная частота вращения п шах составляет 3000-4000 об/мин, и невозможностью выполнения тягового редуктора с большим передаточным отношением. Отечественные подшипники серийных тяговых двигателей при приемлемой долговечности обеспечивают яшах = 2150 об/мин. При передаточном отношении і = 4,4 и диаметре среднеиз-ношенного бандажа £> ср = 1200 мм это соответствует максимальной скорости движения электровоза ПО км/ч. На серийных электровозах с опорно-осевым подвешиванием тяговых двигателей "шах = 5,353. При V = 120 км/ч и £>ср = = 1200 мм получим п тах = 2800 об/мин, но промышленность не выпускает подшипники на такую частоту вращения.

От числа полюсов асинхронного тягового двигателя зависят и потери в преобразователе. Для снижения их коэффициент соотношения скоростей ки должен быть принят равным 2,5

В основном создание асинхронного привода большой мощности зависит в значительной степени от успехов в ряде областей электроники, машиностроения, развития технологии и др.

С 1982 г. ВЭлНИИ приступил к новому этапу создания электровозов с асинхронными двигателями. Согласно требованиям МПС это 12-осные электровозы (серия ВЛ86*). Для них разработаны и построены двигатели НБ-607 (рис. 107, а и б); их привод унифицирован с приводом электровозов ВЛ80Р и ВЛ80С. Статор 2 и сердечник 3 ротора выполнены шихтованными. Пакет статора запрессован в литой остов /. Обмотка статора 4 петлевая, трехфазная, шес-типолюсная, закреплена в пазовой части магнитными клиньями. Обмотка ротора медная, стержни соединены медными кольцами и закреплены на пазовой части магнитными клиньями, а на лобовой стеклобандажами. На валу ротора смонтирован датчик частоты вращения.

Основные технические данные некоторых бесколлекторных тяговых двигателей. В табл. 4 приведены основные параметры тяговых двигателей НБ-601 и НБ-607 электровозов ВЛ80 в и ВЛ86 ф и для сравнения двигателей OD64604 фирмы ВВС электровоза Е120 (ФРГ) двигателей BAZ10577/6 фирмы AEG электровоза 182001.

Тяговые электродвигатели предназначены для привода колесных пар через тяговые редукторы и обеспечения движения тепловоза. Принципиальная конструкция большинства тяговых электродвигателей тепловозов одинакова. Различие состоит в основном в способе закрепления (подвески) на тележке, в системе смазывания моторно-осевых подшипников, в исполнении некоторых составных частей и в целом сборочных единиц, отражающем время выпуска и особенности тепловоза. Все тяговые электродвигатели, кроме типа ЭД126, являются четырехполюсными с последовательным возбуждением, а типа ЭД126 - шестиполюсные.

Тяговые электродвигатели могут работать только при обеспечении эффективной вентиляции. Основные технические данные тяговых электродвигателей для широко эксплуатируемых и осваиваемых новых тепловозов приведены в табл. 8.2. Наиболее типичными по устройству из выпускаемых и осваиваемых на перспективу тяговых электродвигателей являются ЭД118Б, ЭД125БМ, ЭД126А, ЭД900.

Тяговый электродвигатель ЭД118Б.

Электродвигатель (рис. 8.11) состоит из следующих сборочных единиц: якоря, магнитной системы (в корпусе которой также закреплены щеткодержатели со щетками), подшипниковых щитов с якорными подшипниками, съемных крышек и щитков монтажно-смотровых (коллекторных) и вентиляционных люков, выводных проводов концов обмоток, моторно-осевых подшипников.

Якорь электродвигателя собран на валу 1, изготовленном из качественной легированной стали с дополнительной термообработкой и имеющем свободный конусный конец для насадки ведущей шестерни тягового редуктора. Он опирается на два роликовых подшипника 2 и 21, вмонтированных в подшипниковые щиты 3 и 19. Сердечник 14 якоря набран из листов электротехнической стали, зажатых между нажимными шайбами. Зубцы крайних пакетов листов поверху сварены неплавя-щимся электродом. Пластины коллектора 4 вырублены совместно с петушками из полос трапецеидального профиля меди с присадкой кадмия. Обмотка 10 якоря петлевая одноходовая с неполным числом уравнительных соединений первого рода.

Укладка и закрепление обмотки в пазах сердечника выполнены по схеме (рис. 8.12).

Магнитная система собрана в литом стальном корпусе 13 (см. рис. 8.11), выполненном в поперечнике в виде неравностороннего восьмигранника и являющегося также маг-нитопроводом. На концах корпуса предусмотрены проемы (люки): одни - для подачи и выхода охлаждающего воздуха, другие - для осмотра и обслуживания коллектора, щеткодержателей, щеток и других внутренних частей в эксплуатации. По торцам корпуса выполнены фланцы с резьбовыми отверстиями и расточкой горловин для посадки и крепления подшипниковых щитов. Полюсы магнитной системы (главные 15

Таблица 8.2

Тип электродвигателя

Мощность, кВт

Напряжение, В

Частота вращения (наибольшая),

К.п.д. (наиболь-

Масса, кг

Класс изоляции

Параметры ох-

Система смазки

Серии тепловоза

при напряжении

наибольший крат-

обмоток якоря

лаждающего воздуха, Па

наименьшем

ковременный

наибольшем

Польс-стерная

2ТЭ10, М62, 2ТЭ116, ТЭМ2

ЭД118БУ1 ЭД121АУ1

к о (-и о С

Циркуляционная + поль-стерная МОП нет

2ТЭ116, ТЭЮ ТЭП70, ТЭП85

ЭД125БУХЛ1

Циркуляционная -+ поль-стерная

ЭД126АУХЛ1

2ТЭ126, ТЭ136

Переменный

2ТЭ120 (переменного тока)

и добавочные И) моноблочной конструкции. Они крепятся к корпусу болтами: главные - за жесткий продольный стержень, размещенный в пазу сердечника со стороны якоря, а добавочные - расположенными головками со стороны якоря и затянутыми гайками снаружи корпуса Такая конструкция гарантирует надежность крепления и долговечность резьбы, исключает обрыв болтов при затяжке и в эксплуатации. Головки и гайки снаружи корпуса залиты кварцкомпаундом 12 на основе смолы для предотвращения проникновения влаги внутрь двигателя.

Рис. 8.11. Тяговый электродвигатель типа ЭД118Б:

а - продольный (ступенчатый) разрез; б-- поперечный (частичный) разрез Рис. 8.12. Схема укладки обмотки якоря электродвигателя ЭД118Б: а - укладка в якорь и пластины коллектора уравнителей и катушек обмотки; б - размещение катушек в пазах сердечника; 1- пластины (петушки пластин) коллектора; 2, 7- верхняя и нижняя ветви уравнителя; 3, 4- верхняя и нижняя ветви секции катушки; 5, 6- верхняя и нижняя ветви катушек в пазе; 8, 9- шаг по коллектору катушек и уравнителей; 10, 14- защитная и уплот-ннтельные изоляционные прокладки; 11- изоляционная выстилка паза; 12- корпусная изоляция катушки; 13- проводник секции катушки; 15- пазовый клнн Катушки полюсов выполнены из медных шин: главных - плашмя, добавочных - на ребро. Устройство полюсов показано на рис. 8.13. Соединение катушек полюсов в магнитной системе выполнено: главных - изолированными шинами 18 (см. рис. 8.11), изготовленными в виде пакетов из медных лент и расположенными со стороны привода, добавочных - многожильными проводами (кабелями) 25 со стороны коллектора. Шины и провода в средней части дополнительно закреплены бандажами 26 к скобам корпуса.


Щеткодержатели 5 имеют спиральные ленточные пружины со ступенчатой регулировкой нажатия на щетки и крепятся через изоляторы 7 в разъемных кронштейнах 6, приваренных одной половиной к торцовому фланцу корпуса электродвигателя. Подробно устройство щеткодержателя показано на рис. 8.14, а.

Подшипниковые щиты, кроме опоры и центрирования якоря, служат Рис. 8.13. Устройство полюсов электродвигателя ЭД118Б;


а - главного; б - добавочного; 1, 23- сердечник полюса; 2- стержень крепления полюса; 3, 19- вывод катушкн; 4- корпус электродвигателя; 5, 21- волнистая пружинная рамка; 6, 16- изоляционный каркас; 7, 14- корпусная изоляция катушки; 8, 12, 20- рамка изолирующая; 9- изоляционный заполнитель уступа; 10, 17-межвитковая изоляция; 11, 15-проводники катушки; 13, 24-изоляция сердечника; 18- пластина подпора вывода катушки; 22- немагнитная прокладка; 25- немагнитный опорный уголок Рис. 8.14. Щеткодержатели тяговых электродвигателей:


а - со спиральной ленточной пружиной; б- с рулонной пружиной; в -с винтовой проволочной пружиной; 1, 11, 22- корпуса; 2, 12, 23- болты крепления токопровода щетки; 3, 13, 28- щетки разрезные; 4, 14, 26- амортизаторы; 5, 15, 27, 29- нажимные пальцы; 6, 16, 34- пружины; 7- фиксаторы; 8, 20, 21, 32, 33, 35- оси; 9, 18- изоляционные пальцы крепления щеткодержателя; 10- уплотнитель; 17, 30- нажимные рычаги; 19, 24- рифление привалочной (контактной) поверхности; 25- болт крепления щеткодержателя к кронштейну; 31- регулировочный винт торцовыми частями корпуса электродвигателя. Они представляют литые стальные диски со ступицей для посадки и буртом для закрытия изнутри электродвигателя якорных подшипников. Снаружи подшипники закрыты закрепленными к щитам крышками с лабиринтными уплотнениями, предотвращающими вытекание и загрязнение смазки в эксплуатации. В горловины торцовых фланцев корпуса щиты установлены по плотной посадке и закреплены по периметру болтами. Смазку в подшипники в эксплуатации добавляют через каналы 22 или трубки (см. рис. 8.11), закрываемые болтом-пробкой. Для предотвращения подсоса смазки из подшипника внутрь электродвигателя от разрежения вблизи выхода охлаждающего воздуха из электродвигателя смазочная камера этого подшипника соединена каналом 20 с атмосферой. Крышка 30 основного (верхнего) коллекторного люка закреплена на корпусе с помощью Г-образной бобышки 27 и рычажного пружинного замка 31, а остальные крышки 23, 40 и щитки 16 - болтами. Все крышки имеют уплотнители 28 из пористой резины.

Моторно-осевые подшипники служат опорой электродвигателя на ось колесной пары тележки. Они вмонтированы в специальные разъемные приливы (выступы) корпуса электродвигателя и включают вкладыши 39, смазочное устройство и крышку 38, закрепленную болтами 37. Вкладыши выполнены в виде массивных бронзовых цилиндров, разрезанных по образующей на две половины. В средней части одной половины предусмотрено окно для прохода фитиля и подвода смазки к трущимся поверхностям оси и вкладыша. Рабочая поверхность вкладышей залита баббитом и для лучшего прохода смазки по длине имеет фигурную (гиперболическую) расточку. Смазочное устройство включает две независимые системы смазки: циркуляционную и фитильную (польстер-ную). Циркуляционная система смазки осуществляется шестеренным насосом, приводимым во вращение от оси колесной пары и подающим смазку к трущимся поверхностям из ванны (камеры) 36. Польстерная система подвода смазки основана на принципе капиллярности и осуществляется с помощью закрепленного в обойме хлопчатобумажного фитиля 33, один конец которого опущен в ванну со смазкой, закрытую крышкой 35, а другой проходит через окно во вкладыше и прижимается к оси колесной пары пружинно-рычажным устройством 34. Такое резервирование гарантирует надежность смазки трущихся поверхностей во всем диапазоне скоростей движения тепловозов.

Электродвигатель устанавливается под кузовом на тележке тепловоза и крепится с одной стороны моторно-осевыми подшипниками на оси колесной пары, а с другой опирается специальными выступами («носиками») корпуса (со сменными накладками 24 повышенной износостойкости) на раму тележки через предварительно сжатые распорные пружины. Такое крепление (подвешивание) электродвигателя называется опорно-осевым.

Электродвигатель охлаждается воздухом, подаваемым от специальных вентиляторов тепловоза в раструб (люк) 8, который до установки электродвигателя на тепловоз закрыт крышкой 9. Охлаждающий воздух проходит двумя потоками: один над коллектором, сердечником якоря и в зазорах между полюсами магнитной системы, другой под коллектором, через аксиальные вентиляционные отверстия в сердечнике якоря. Оба потока соединяются в корпусе электродвигателя со стороны, противоположной коллектору, и выходят наружу через три радиальных люка 17, огражденных сетками 29 и щитками 16.

В электрическую схему тепловоза тяговые электродвигатели включаются выводными концами (проводами) 32 обмоток через поездные контакторы. Катушки возбуждения, как и катушки добавочных полюсов электродвигателя, включены последовательно с обмоткой якоря. При этом обмотка добавочных полюсов имеет постоянное соединение со щеткодержателями (а следовательно, и с обмоткой якоря) внутри электродвигателя. Для обеспечения реверса вращения якоря (и изменения направления движения тепловоза) начало и конец обмотки возбуждения имеют самостоятельные выводы. Обшая схема соединения и маркировки выводов обмоток электродвигателя приведена на рис. 8.15, а.

Эксплуатация и техническое обслуживание электродвигателей принципиально отличаются от генераторов только по моторно-осевым подшипникам. За моторно-осевыми подшипниками необходимы повседневное наблюдение и уход как за ответственными составными частями локомотива, обусловливающими безопасность движения. При этом основные работы состоят в контроле нагрева подшипников, наличия и качества смазки, исправности смазочных устройств, а также в периодическом добавлении свежей смазки и удалении (сливе) конденсата (воды) из ванн для смазки.

Тяговый электродвигатель ЭД125БМ. Конструкция электродвигателя (рис. 8.16) по ряду составных частей и сборочных единиц существенно отличается от ЭД118Б. Якорь собран на остове, выполненном в виде трубы и позволяющем более просто заменить поврежденный вал, не нарушая целостности всего якоря. Пластины коллектора стянуты в монолитное арочное кольцо с помощью пружинного разрезного кольца и гайки (вместо болтов). Обмотка якоря выполнена из провода большого сечения с расплющиванием концов секций (для соединения с коллектором), изоляция полиимидная класса Н. Щеткодержатели имеют нажимное устройство с применением рулонных пружин и крепление в кронштейнах через рифленые (гребенчатые) привалочные поверхности.

Выпускаемые на базе ЭД125БМ другие модификации электродвигателей отличаются в основном конструкцией смазочного устройства мо-торно-осевых подшипников или полным отсутствием последних.

Тяговый электродвигатель ЭД126А. Электродвигатель предназначен для грузовых тепловозов.

Корпус 12 электродвигателя (рис. 8.17) выполнен сварным из толстолистового проката цилиндрической формы с опорными площадками и лапами 20 для установки на раму тележки без моторно-осевых подшипников (опорно-рамная подвеска). В торцовые фланцы (с горловинами) корпуса установлены и закреплены болтами литые из стали подшипниковые щиты 4 и 15. С внутренней стороны фланца (у коллектора) закреплена кольцевая поворотная траверса 7 со щеткодержателями (и щетками) 6 (см. рис. 8.14, в) и ручным шестеренным приводом 8. Якорь собран на полом сварно-литом остове 1, в расточку которого запрессован полый вал 2, через центральное отверстие которого проходит торсионный (податливый) вал привода колесной пары, соединяемый (через муфту) с конусным концом 19 полого вала. На остов насажены сердечник 9, зажатый между обмоткодер-


Рис. 8.15. Схемы соединений обмоток тяговых электродвигателей:

а - четырехполюсных; б - шестиполюсных; в - асинхронных; н, к - начало и конец катушек полюсов; Я/, Я2- начало и конец обмотки якоря; Д2- конец обмотки добавочных полюсов; С1, С2- начало и конец обмотки последовательного возбуждения у электродвигателей постоянного тока, а у асинхронных электродвигателей С/, С2, СЗ- выводные концы фаз обмотки статора; 0- специальный вывод для системы защиты. Штриховыми линиями показаны соединения катушек со стороны, противоположной коллектору Рис. 8.16. Тяговый электродвигатель типа ЭД125БМ:


/, 12-подшипники; 2, И-подшипниковые щиты; 3-коллектор (с разрезным пружинным кольцом); 4- щеткодержатель (с рулонными пружинами и щетками); 5- корпус; 6- добавочный полюс; 7- герметизирующая заливка полюсных болтов; 8- главный полюс; 9- защитный кожух обмотки; 10- защитные жалюзи вентиляционных люков; 13- остов (втулка) якоря; 14- приводной конец вала якоря Рис. 8.17. Тяговый электродвигатель типа ЭД126А жателями, и коллектор 5, а подшипники якоря 3 и 18 установлены на полом валу. Обмоткодержатель со стороны, противоположной коллектору, имеет кольцевой радиальный бурт 16 для защиты головок обмотки от повреждений. Магнитная система выполнена шестиполюсной. Полюсы закреплены к корпусу проходными болтами 11 и 13. Катушки главных полюсов 14 и добавочных 10 намотаны из медной ленты на ребро. Соединения и маркировка выводов обмоток выполнены по схеме (см. рис. 8.15,6), а концы их выведены в общую коробку. Над люками для выхода охлаждающего воздуха из электродвигателя закреплены защитные козырьки 17, позволяющие производить обмыв двигателя струей воды.


Тяговый электродвигатель ЭД900.

Опытный асинхронный тяговый электродвигатель (рис. 8.18) для создаваемых мощных грузовых тепловозов с электрической передачей переменного тока имеет принципиальное отличие по конструкции и рабочим характеристикам. В сравнении с описанными электродвигателями постоянного тока он значительно проще в изготовлении и обслуживании. Основными сборочными единицами его являются статор, ротор, подшипниковые щиты. Статор включает литой круглый корпус 6 электродвигателя, сердечник 7, набранный из листов электротехнической стали и зажатый нажимными шайбами 9, двухслойную петлевую обмотку 8, лобовые части катушек которой закреплены конусными кольцами 5. Ротор собран на остове 2, выполненном в виде трубы. Сердечник 3 ротора набран из тонколистовой стали. В его пазах по внешнему диаметру размещена короткозамкнутая обмотка 11, выполненная в виде беличьей клетки путем заливки пазов и торцов сердечника алюминиевым сплавом. Вал 13, подшипниковые щиты 4 и 10 с вмонтированными в них роликовыми подшипниками 1 и 12 для опоры ротора, а также система вентиляции аналогичны описанным у ЭД118Б. Электродвигатель выполнен для опорно-рамной подвески на тележке и не имеет моторно-осевых подшипников.

Принцип работы электродвигателя основан на том, что создаваемое обмоткой статора вращающееся магнитное поле наводит ток в коротко-замкнутой обмотке ротора и под действием электромагнитных сил приводит ротор во вращение. Принципиальная электрическая схема электродвигателя приведена на рис. 8.15, е.


Рис. 8.18. Тяговый асинхронный электродвигатель типа ЭД900

При эксплуатации электродвигателя требуется регулярный уход за изоляцией и контактными соединениями выводов обмотки статора, а также за подшипниками ротора.