Моно инжектор принцип работы. Прогрев двигателя и датчик температуры двигателя. Обратная связь с датчиками

Здравствуйте, уважаемые автолюбители! Как «железный конь пришел на смену деревенской лошадке», также и инжекторная система впрыска топлива, пришла на смену карбюраторам в автомобилях.

О преимуществах и недостатках систем подачи топлива, пусть спорят специалисты, а задача владельца автомобиля иметь представление о том, что такое инжектор, как устроен инжектор автомобиля.

И не обязательно устройство и принцип работы инжектора вам понадобится для того, чтобы ремонтировать его своими руками. Но, знать о том, как работает и из чего состоит инжектор автомобиля, нужно. Хотя бы для того, чтобы недобросовестные мастера автосервисов не пытались «нагреть» руки на вашем незнании своего авто.

Инжектор, как революция в автомобилестроении

Что такое инжектор автомобиля? Инжектором (лат. injicio, фр. Injecteur, англ. Injector – выбрасываю) – называется форсунка, как распылитель газа или жидкости (топлива) в двигателях, либо часть инжекторной системы подачи (впрыска) топлива в двигателях внутреннего сгорания.

Годом рождения инжекторной системы впрыска считается 1951, когда компания Bosch оснастила ею 2-х тактный двигатель купе Goliath 700 Sport. Затем, в 1954 году, эстафету подхватил Mercedes-Benz 300 SL.

Массовое, серийное внедрение инжекторных систем впрыска топлива началось в конце 70-х годов прошлого века. Работа инжектора, по своим эксплуатационным характеристикам, во многом превосходила работу карбюраторной подачи топлива.

Как результат: первое десятилетие 21 века практически завершило вытеснение карбюраторов. Современные авто снабжаются в основном системами распределенного и прямого электронного впрыска.

Принцип работы инжектора в системе подачи топлива

Fuel Injection System (система впрыска топлива) осуществляет подачу топлива посредством прямого впрыска при помощи форсунки (инжектора) в цилиндр двигателя либо во впускной коллектор. Соответственно, автомобили, оснащенные такой системой, носят название инжекторные.

Классификация инжекторного впрыска зависит от того, какой принцип действия инжектора, а также по месту установки и количеству инжекторов.

Центральный впрыск топлива (моновпрыск) осуществляет впрыск посредством одной форсунки на все цилиндры двигателя. Инжектор, как правило, располагается на впускном коллекторе (на месте карбюратора). Система моновпрыска на сегодняшнее время не пользуется популярностью у автомобилестроителей.

Основная масса современных серийных автомобилей, снабжена системой распределенного впрыска топлива. То есть, отдельная форсунка отвечает за свой цилиндр.

Система распределенного впрыска топлива, классифицируется по типам:

  • одновременный – все форсунки системы подают топливо одновременно во все цилиндры,
  • попарно-параллельный – тип впрыска, когда происходит парное открытие форсунок: одна открывается перед циклом впуска, другая, перед циклом выпуска. Характерно то, что попарно-параллельный принцип открытия форсунок применяется в период запуска двигателя, либо в аварийном режиме неисправности датчика положения распредвала. А во время движения, используется так называемый фазированный впрыск топлива,
  • фазированный - тип впрыска, когда каждый инжектор открывается перед тактом впуска,
  • прямой – тип впрыска, происходящий непосредственно в камеру сгорания.

Принцип работы инжектора основывается на использовании сигналов микроконтроллера, который в свою очередь получает данные от датчиков.

Схема работы инжектора

Если не влазить в дебри «электронного мозга» нашего автомобиля, то схема работы инжектора выглядит следующим образом. На многочисленные датчики поступает информация о: вращении коленвала, о расходе воздуха, о том, какая температура охлаждающей жидкости двигателя, о дроссельной заслонке, о детонации в двигателе, о расходе топлива, о скоростном режиме, о напряжении бортовой сети авто и так далее.

Контроллер, получая данную информацию о параметрах автомобиля, производит управление системами и приборами, в частности: подачей топлива, системой зажигания, регулятором холостого хода, системой диагностики и так далее. Изменение рабочих параметров инжекторной системы впрыска меняется систематически, исходя из полученных данных.

Инжектор включает в себя такие исполнительные элементы, как:

  • бензонасос (электрический),
  • ЭБУ (контроллер),
  • регулятор давления,
  • датчики,
  • форсунка (инжектор).

Соответственно, схема инжектора: электробензонасос подает топливо, регулятор давления поддерживает разницу давления в инжекторах (форсунках) и воздухом впускного коллектора. Контроллер, обрабатывает информацию от датчиков: температуры, детонации, распредвала и коленвала, и управляет системами зажигания, подачи топлива и так далее.

Всем хороша инжекторная система впрыска топлива, но и она не обошлась без своих особенностей. Приверженцы карбюраторов, называют их недостатками. Особенностями инжектора смело можно назвать: достаточно высокая стоимость узлов инжектора, низкая ремонтопригодность, высокие требования к качеству и составу топлива, необходимость специального оборудования для диагностики, и высокая стоимость ремонтных работ.

Теперь, перейдем от рассказа о том, как работает и выглядит инжектор к наглядному пособию. Вы увидите на видео, принцип работы инжектора, и вам сразу же станет понятно всё, о чем написано выше.

С целью сокращения вредных выбросов и повышения экономичности двигателей автомобильная топливная система в последние годы серьезно изменилась. Например, в США от карбюраторов отказались ещё в 1990 году. Системы впрыска топлива появились ещё в середине ХХ века, а на серийных автомобилях европейских производителей их начали применять примерно с 1980-х.

На сегодняшний день все новые автомобили оснащаются именно инжекторными двигателями. В этой познавательной статье мы рассмотрим принцип работы инжектора и его устройство. Вы сможете узнать, как топливо попадает в цилиндр двигателя. Устройство двигателя с системой впрыска – очень актуальная тема для современного автолюбителя, поэтому устраивайтесь поудобнее и начинаем!

Карбюратор «сдаёт позиции»

После появления двигателя внутреннего сгорания карбюратор использовался для подачи топлива в двигатель. В такой технике как бензопилы и газонокосилки это устройство применяется до сих пор. Но в процессе эволюции автомобиля карбюратору становилось всё сложнее и сложнее удовлетворять многим требованиям к эксплуатации.

Например, для того чтобы соответствовать ужесточающимся экологическим нормам были введены каталитические нейтрализаторы (). Катализатор эффективен лишь в случае тщательного контроля топливно-воздушной смеси. Кислородные датчики (как их проверяют мы уже писали – ) отвечают за контроль количества кислорода в выхлопных газах. Эта информация используется и электронным блоком управления двигателем (ЭБУ) для регулировки пропорции воздух/топливо в режиме реального времени.

В итоге получается замкнутая система управления , которую невозможно было реализовать с использованием карбюраторов. В течение короткого периода времени выпускались карбюраторы с электронным управлением, но они были ещё более сложными, чем чисто механические устройства.

Сначала карбюраторы были заменены системой впрыска топлива в корпусе дроссельной заслонки (также известна как одноточечная система впрыска или система центрального впрыска топлива). В них форсунки были расположены в корпусе дроссельной заслонки. Это было простое решение для замены карбюратора, поэтому автопроизводителям не пришлось вносить изменения в конструкцию двигателей.

Со временем, в процессе появления новых двигателей, система центрального впрыска топлива была заменена многоточечной системой впрыска топлива (также известна как система последовательного впрыска ). В этих системах используется отдельная топливная форсунка для каждого цилиндра. Как правило, они расположены так, чтобы распылять топливо прямо на впускной клапан. Эти системы обеспечивают более точное дозирование топлива и быструю реакцию. Пришло время подробнее изучить принцип работы инжектора.

Когда вы давите на газ

Педаль газа в вашем автомобиле подключена к дроссельной заслонке. Речь идет о клапане, который регулирует количество воздуха, поступающего в двигатель. Так что педаль газа на самом деле является педалью воздуха.

Когда вы нажимаете на педаль газа, дроссельная заслонка открывается больше, в результате чего двигатель получает больше воздуха. Блок управления двигателем (ЭБУ, компьютер, управляющий всеми электронными компонентами двигателя) «замечает» открытую дроссельную заслонку и увеличивает подачу топлива для приготовления оптимальной топливно-воздушной смеси. Очень важно, чтобы подача топлива увеличивалась сразу после открытия дроссельной заслонки. В противном случае, некоторая часть воздуха окажется в цилиндрах без достаточного количества топлива.

Датчики контролируют содержание кислорода в выхлопных газах, а также количество воздуха, поступающего в двигатель. ЭБУ использует эти данные для максимально точного выбора соотношения воздуха и топлива. Как работает инжектор на современных автомобилях?

Форсунка

Топливная форсунка (инжектор) – это клапан с электронным управлением. Подачу топлива к этому клапану обеспечивает топливный насос. Форсунка может открываться/закрываться много раз в секунду.

Когда форсунка находится под напряжением, электромагнит перемещает поршень, открывающий клапан, в результате чего происходит впрыск топлива под давлением через крошечное сопло. Насадка предназначена для распыления топлива. Появляется мелкий туман, который легко сгорает.

Количество топлива, которое подается в двигатель, зависит от того, сколько времени форсунка остается в открытом положении. Данный показатель называют длительностью или шириной импульса, он управляется ЭБУ.

Форсунки установлены во впускном коллекторе таким образом, чтобы распылять топливо прямо на впускные клапана. Трубка, которая поставляет топливо к каждой из форсунок под определенным давлением, называется топливной рампой.

Для того чтобы определить оптимальное количество топлива, блок управления двигателя получает сигналы от множества датчиков. Рассмотрим самые важные из них.

Устройство инжекторного двигателя – основные датчики

Для выбора оптимального количества топлива в различных условиях эксплуатации ЭБУ двигателя следит за показаниями различных датчиков. Вот лишь несколько основных:

  • Датчик массового расхода воздуха (ДМРВ). Сообщает блоку управления массу воздуха, поступающего в двигатель.
  • Датчик (-и) кислорода (). Контролирует содержание кислорода в выхлопных газах. С помощью полученной от него информации ЭБУ может выявить богатую или бедную топливную смесь и внести соответствующие коррективы.
  • Датчик положения дроссельной заслонки. Следит за положением дроссельной заслонки (она влияет на подачу воздуха в двигатель), благодаря чему блок управления может оперативно реагировать на изменения, увеличивая либо сокращая расход топлива по мере необходимости.
  • Датчик температуры охлаждающей жидкости. Помогает ЭБУ определить, когда двигатель достиг оптимальной рабочей температуры.
  • Датчик напряжения. Следит за напряжением бортовой сети автомобиля. В зависимости от показаний датчика блок управления может увеличить число оборотов холостого хода двигателя, если напряжение падает (такое бывает при высоких электрических нагрузках).
  • Коллекторный датчик абсолютного давления. Анализирует давление воздуха во впускном коллекторе. Количество воздуха, поступающего в двигатель, является хорошим показателем того, сколько энергии он вырабатывает. Чем больше воздуха поступает в двигатель, тем ниже давление в коллекторе. Этот показатель используется для определения количества производимой энергии.
  • Датчик скорости вращения коленчатого вала. Скорость вращения коленвала – один из факторов, влияющих на расчет требуемой длительности импульса.

Существует два основных типа управления многоточечными системами впрыска : топливные форсунки могут открываться одновременно или каждая из них может открываться только перед открытием впускного клапана соответствующего цилиндра (это называется последовательный многоточечный впрыск топлива).

Преимущество последовательного впрыска топлива заключается в том, что система может реагировать на любые действия водителя быстрее, поскольку с момента выполнения действия она ждет лишь очередного открытия впускного клапана. Системе не нужно ждать полного вращения двигателя. Разобраться в работе инжектора мы смогли, но кто всем этим «руководит»?

Управление работой двигателя

Алгоритмы, управляющие двигателем, являются довольно сложными. Существует множество требований, которым силовой агрегат должен удовлетворять. Например, это касается показателя вредных выбросов или требований топливной .

Блок управления двигателем использует формулу и множество таблиц соответствия для установки длительности импульса в определенных условиях эксплуатации. Формула представляет собой сочетание многих факторов, умноженных друг на друга. Мы рассмотрим упрощенную формулу определения длительности импульса топливной форсунки . В этом примере наша формула будет состоять лишь из трех показателей, в то время как в реальности обычно учитывается свыше сотни параметров.

Длительность импульса = (Длительность базового импульса) x (Фактор A) x (Фактор B)

Для расчета длительности импульса электронный блок сначала выполняет поиск длительности базового импульса в соответствующей справочной таблице. Базовая длительность импульса – это функция от частоты вращения двигателя (RPM) и нагрузки (она вычисляется из абсолютного давления в коллекторе). Например, частота вращения двигателя 2000 оборотов в минуту, а показатель нагрузки равен 4. В таблице необходимо найти число в месте пересечения показателей 2000 и 4. Получается 8 миллисекунд.

Частота вращения двигателя
1 2 3 4 5
1,000 1 2 3 4 5
2,000 2 4 6 8 10
3,000 3 6 9 12 15
4,000 4 8 12 16 20

В следующих примерах А и В представляют собой параметры, которые блок управления получает от датчиков. Допустим, что А – это температура охлаждающей жидкости, а B – уровень содержания кислорода. Если температура охлаждающей жидкости равна 100, а уровень кислорода – 3, справочные таблицы свидетельствуют о том, что фактор А = 0,8, а фактор B = 1,0.

A Фактор A B Фактор B
0 1.2 0 1.0
25 1.1 1 1.0
50 1.0 2 1.0
75 0.9 3 1.0
100 0.8 4 0.75

Таким образом, поскольку нам известно, что длительность базового импульса – это функция от нагрузки и частоты вращения двигателя, а длительность импульса = (длительность базового импульса) x (фактор A) x (фактор B) , общая длительность импульса в нашем примере равна:

8 х 0,8 х 1,0 = 6,4 мс

На этом примере видно, как система управления выполняет настройку. Так как параметр В отображает содержание кислорода в выхлопных газах, согласно данным с таблицы, можно сделать вывод, что выхлопные газы содержат слишком много кислорода, в результате чего ЭБУ сокращает подачу топлива.

Реальные системы управления учитывают свыше 100 параметров, для каждого из которых составлена собственная таблица соответствия. Некоторые параметры даже корректируются с течением времени с целью компенсации изменений производительности компонентов, к примеру, каталитического нейтрализатора (о проверке катализатора читайте ). И в зависимости от количества оборотов двигателя, блок управления может выполнять эти расчеты более 100 раз в секунду.

Если наша статья о том, как работает инжектор, и какие существуют системы впрыска топлива, вам понравилась, поделитесь ссылкой с друзьями в социальных сетях, используя соответствующие кнопочки ниже. Спасибо за внимание, оставайтесь с нами!

Инжектор автомобиля являет собою форсунку, которая является распылителем жидкости (топлива) или газа в двигателе внутреннего сгорания. Кроме того, инжектором называют и часть инжекторной системы впрыска топлива (подачи топлива) в двигателях внутреннего сгорания современных автомобилей. Впервые устройства инжектора увидели мир еще в 1951 году, когда был оснащен новым устройством двухтактный двигатель. В массовом и серийном потреблении внедрение инжекторных систем началось уже в 80-х годах прошлого века. По всем своим эксплуатационным параметрам работа инжектора превосходила работу карбюраторной системы подачи топлива. Вследствие этого, начало двадцать первого века ознаменовало переход автомобильных производителей от устаревших карбюраторных систем впрыска топлива, до современных инжекторных устройств.

1. Как работает инжектор.

Устройство инжекторной системы впрыска топлива производит данную процедуру посредством особого устройства форсунки, которое, собственно, и является инжектором. Происходит прямой впрыск непосредственно в цилиндр двигателя внутреннего сгорания или же в устройство впускного коллектора.

Таким образом, все транспортные средства, которые оснащиваются такого рода системами называются инжекторными. Классификация впрыска инжекторного будет напрямую зависеть от того, какой именно принцип действия присущ данному инжектору. Кроме того, она напрямую будет зависеть и от местоположения установки инжектора и количества единиц форсунок в системе.

Моновпрыск, или же центральный впрыск топлива, производит впрыск с помощью одной единственной форсунки и совершает подачу на все имеющиеся в арсенале цилиндры двигателя внутреннего сгорания. Как правило, инжектор находится непосредственно на впускном коллекторе, где должен был бы в замен располагаться Моновпрысковая система в современном мире не пользуется особой популярностью среди автомобильных производителей и инженеров.

Большая часть современных автомобилей, которые являются серийными, снабжаются системами распределенного впрыска топлива. В данной конструкции отдельная форсунка будет отвечать только за свой предназначенный цилиндр. Исходя из всего вышеуказанного можно определить, что система распределительного впрыска топлива может классифицироваться по нескольким типам.

Одновременный тип являет собою систему, в которой все форсунки будут одновременно подавать топливо непосредственно на все цилиндры двигателя внутреннего сгорания. Устройство попарно-параллельного типа впрыска заключается в том, что происходит парное открытие форсунок, при которой одна будет открываться непосредственно перед циклом впуска, а вторая, перед выпускным циклом.

Характерным в данной конструкции является то, что она применяется в момент и период запуска двигателя, или же при аварийном режиме, в период которого приходит в неисправность датчик положения распределительного вала. В моменты непосредственного передвижения транспортного средства используются фазированные впрыски топлива. Данный тип впрыска происходит тогда, когда каждый инжектор начинает открываться перед впускным тактом. Кроме того существует и прямой тип впрыска топлива, при котором происходит прямое направление топлива уже в камеру сгорания.

Принцип работы устройства инжектора базируется на эксплуатации сигналов, который подает микроконтроллер, в свою очередь, получающий данные от датчиков. Если не внедряться во всю глубинную суть электронного мозга транспортного средства, то можно достаточно просто рассмотреть схему работы инжекторной системы. На множество датчиков поступает определенная информация, которая будет оповещать о: расходе воздуха, вращении , температуре охладительной жидкости двигателя внутреннего сгорания, детонации в двигателе, дроссельной заслонке, расходе топлива, напряжении бортовой сети автомобиля, скоростном режиме и так далее.

Устройство контроллера, когда получает определенную подготовленную информацию о параметрах автомобиля, будет производить управление приборами и системами. Помимо этого, данное устройство будет контролировать системы зажигания, подачу топлива, регулятор холостого хода и систему диагностики автомобиля. Так, будет систематически происходить изменение рабочих параметров системы впрыска инжектора, что будет вызвано полученными данными.

2. Обслуживание инжектора.

Для того, чтобы устройство инжектора прослужило автомобилисту верную и длительную службу, следует довольно часто промывать его и не забывать чистить от всевозможных загрязнений. Для того чтобы определить степень загрязнения инжектора следует просто обратить свой взор на работу двигателя внутреннего сгорания. Из-за того, что производительность и коэффициент полезного действия форсунок будет снижаться с загрязнением, на порядок возрастет и расход топлива, которое будет насос накачивать.

При непосредственном передвижении транспортного средства заметить это достаточно просто, так как автомобиль будет периодически подергиваться, вследствие чего при разгоне будут наблюдаться очень резкие провалы.

Кроме того будут возникать и нестабильные обороты при использовании автомобиля на холостом ходу. При загрязненном впрыскивателе топлива при холодных погодных условиях автомобиль будет очень сложно завести. В том случае, когда тщательная чистка и промывка не помогла автомобилисту избавиться от грязи и разных засорений, то следует приступить к ремонту устройства инжектора.

3. Что не стоит делать с инжектором.

Исходя из всего вышеуказанного можно определить, что основным составным элементом инжектора являются форсунки, посредством которых топливо в определенных дозах впрыскивается непосредственно в камеры сгорания двигателя. Довольно часто в автомобильном быту можно услышать мнение о том, что инжекторные форсунки поддаются засорению из-за того, что автомобилист заправляет свое транспортное средство некачественным топливом, в котором в наличии есть инородные частицы и песок. Тем не менее, вероятность такого рода загрязнения является достаточно низкой, так как топливная система транспортного средства оборудуется фильтрами, которые и производят очистку поступающего топлива от разного рода крупных элементов.

Таким образом устройство инжектора засоряется непосредственно из-за простого и банального длительного использования. Основной причиной засорения служит то, что все бензиновые тяжелые фракции оседают на форсунковых стенках. Это происходит в большинстве случаев после того, как автомобилист глушит двигатель.

Именно в этот момент на порядок возрастает корпусная температура форсунок, так как именно корпус нагревается от двигателя внутреннего сгорания, охлаждение которого прекращается при отключении мотора.

При воздействие температур будут выпариваться лишь легкие фракции топлива, которое в незначительном количестве остается в системе. Все же тяжелые фракции будут оседать непосредственно на каналах форсунок и не будут растворяться в дизельном топливе или бензине. Все эти отложения, толщина которых не превышает нескольких микрон, будут уменьшать сечение канала форсунки, вследствие чего будет нарушаться и вся ее работа и снижаться производительность.

Ненормальным явлением есть то, что в топливе располагается большое содержание тяжелых маслянистых фракций. Это будет характерным для бензина, качество которого оставляет желать лучшего. Данное топливо получается путем прямой перегонки, путем добавления разного рода высокооктановых присадок. Помимо этого, к возникновению тяжелых фракций может привести и неправильная транспортировка топлива, или же нарушения правил его хранения.

4. Система управления инжектором.

Самым сложным устройством, которое является частью инжекторного дизельного двигателя, является электронный блок управления. К данному устройству относятся несколько других устройств: оперативное и постоянное запоминающее устройство, микропроцессор. Именно посредством него происходит обработка поступающих от датчиков электронных сигналов, анализ информации и сравнение их с данными, которые хранятся в памяти компьютера.

Встроенная программа в обязательном порядке будет учитывать все особенности разных режимов работы двигателя внутреннего сгорания и условия внешние, которые послужат местом его постоянной работы. Если же в информации обнаруживаются разного рода расхождения, то компьютер будет выдавать команды для коррекции исполнительным механизмам. Именно применение распределенного впрыска топлива послужило началом возникновения системы отключения части цилиндров двигателей внутреннего сгорания, которые имеют большой объем.

Все датчики, которые собирают информацию о работе двигателя внутреннего сгорания, действуют вместе с Они располагаются на разных узлах, которые входят в конструкцию двигателя внутреннего сгорания. К такого рода приборам относятся: , датчик массового расхода воздуха, датчик детонации, датчик температуры охладительной жидкости и множество других.

Процесс работы системы впрыска инжектора является достаточно простым. Датчик расхода воздуха, который измеряет массу газа, которая поступает непосредственно в двигатель внутреннего сгорания, направляет данные компьютеру. Именно на базе этой информации, но и с учетом иных параметров, которые указывались выше, компьютер будет рассчитывать оптимальное количество топлива на определенный этот объем воздуха. После этого он подаст электрический импульс конкретно нужной продолжительности непосредственно на форсунки. При приеме данного импульса они будут открываться, а из-за давления они начнут впрыск топлива непосредственно во впускной коллектор двигателя.

Подписывайтесь на наши ленты в

«Родившись» в 1951 году, инжектор постепенно пришел на смену карбюраторам, читаем статью — . А произошло это благодаря одному из его важнейших преимуществ, которое состоит в уменьшении количества используемого топлива. Помимо которого специалисты также отмечают лучшую динамику разгона инжекторных авто, стабильность функционирования таких моторов, а также снижение числа вредных выбросов от их работы в атмосферу.

Выясним, откуда берутся такие свойства, и вообще каков принцип работы инжектора, однако прежде кратко приведу основные недостатки последнего, чтоб вы не считали его идеальным:

  • дорогой ремонт узлов;
  • наличие элементов, не подлежащих ремонту;
  • необходимость использования качественного топлива;
  • необходимость применения спецоборудования для диагностики, ремонта и обслуживания.

Как работает инжектор?

Итак, как известно, в современных авто карбюраторная система уже полностью замещена . Последние, в отличие от карбюраторных, повышают мощность автомобиля, улучшают динамику его разгона, экологичность. При том, что расход топлива при этом уменьшается.

Кстати, высокие экологические показатели инжектор сохраняет без различных регулировок и настроек. Ведь там имеет место самонастройка топливовоздушной смеси, которая стала возможна благодаря кислородному датчику, установленному на выпускном коллекторе (лямбда-зонд).

Устройство инжектора.

Подача топлива в инжекторный движок производится форсунками, которые могут располагаться или на впускном коллекторе (моновпрыск), или недалеко от впускных клапанов цилиндров (распределенный впрыск), или непосредственно в ГБЦ — головке блока цилиндров (прямой впрыск — впрыск топлива осуществляется в саму камеру сгорания), о том, как промыть форсунок своими руками смотрим .

Помимо форсунок инжектор включает в себя следующие исполнительные элементы:

  • ЭБУ (контроллер) — обрабатывает данные от датчиков и управляет системами подачи топлива и зажигания;
  • бензонасос (электрический) — он подает топливо;
  • различные датчики: температуры, коленвала, распредвала, детонации;
  • — поддерживает разницу давления воздуха во впускном коллекторе и форсунках.

Также все инжекторные моторы оснащаются каталитическим нейтрализатором (катализатором) в виде «сот», на котором нанесен активный слой, способствующий догоранию топлива, остающемуся в выхлопных газах. Однако заправка этилированным бензином длительное время приводит к определенным поломкам, из-за которых катализатор теряет такую способность.

Датчик кислорода в инжекторе и его работа.

Наиболее известным типом является циркониевый кислородный датчик, подробнее в статье — . Он есть переключатель (к слову, один из самых важных), который резко изменяет свое состояние на отметке 0.5% кислорода, содержащегося в выхлопных газах.

Устройство интерфейса датчика выглядит следующим образом: прогретый датчик (300 градусов Цельсия и выше) при богатой смеси (содержание кислорода < 0.5%), как слабый источник тока, устанавливает на выходе напряжение от 0,45 до 0,8 Вольт, а при бедной смеси (содержание кислорода > 0.5%) - от 0.2 до 0.45 Вольт. И не важно, какой точно при этом уровень напряжения, учитывается лишь то, где он расположен по отношению к средней линии. То есть топливо добавляется, когда ECU определяет сигнал бедной смеси, и уменьшается, когда богатой. Следовательно, подача топлива регулируется в зависимости от практических результатов сгорания, что дает возможность системе приспособиться к разным условиям работы.

Известно, что надежно данный датчик работает только в хорошо прогретом состоянии, следовательно, ECU система TCCS заметит его показания только в случае прогрева двигателя до нужного уровня. Однако не всех это устраивает. Поэтому для придания скорости этому процессу в датчик кислорода часто монтируют электрический подогреватель.

Компьютер системы TCCS. Самодиагностика инжектора.

В современном инжекторе установлено много датчиков, это разрешает оптимизировать его работу.

Принцип работы механического инжектора.

Хотя ранее использовались иные конструкции инжекторных моторов с впрыском. К примеру, известен такой двигатель, в котором управление происходит при помощи механических устройств. Управление здесь — дозировка объема топлива при помощи специального клапана. Клапан же управляется системой рычагов, которую приводит в действие воздушный поток. Сегодня механически управляемые клапаны уже полностью изжили себя.

В настоящее же время в каждой системе впрыска есть встроенная подсистема самодиагностики, которая позволяет установить неисправности узлов, датчиков и исполнительных механизмов системы. После самодиагностики компьютер вырабатывает диагностические коды. Они извлекаются из памяти компьютера и расшифровываются согласно таблицам. У каждого производителя свой вариант извлечения данных кодов. Найти практически всех их можно в свободном доступе в интернете, подробнее о диагностике инжектора своими руками, можно прочитать . Кроме того рекомендую ознакомиться с инструкцией, о том .

С течением времени азы автомобилестроения менялись и становились всё более далёкими от своих истоков. Так, топливная система транспортных средств подвергалась постоянной модернизации до тех пор, пока не появился универсальный инжектор, используемый в конструкции большинства бензиновых машин и сегодня. Инжекторное питание мотора топливом, по сути, особых премудростей и сложностей не имеет, однако для понятия принципов и смысла его функционирования не лишним будет ознакомиться с таковым более подробно. Именно о типовой конструкции и работе современных инжекторов пойдёт речь в сегодняшнем материале. Интересно? Обязательно «листайте» страницу ниже.

Немного истории

Несмотря на свою популяризацию лишь в середине 80-х годов 20 века, топливный инжектор появился гораздо раньше. По официальным данным, первые инжекторные установки подпитки мотора начали тестироваться и использоваться ещё в начале 30-х годов прошлого столетия. В те времена устройство и работа инжектора были до боли примитивны, поэтому использовались данные узлы лишь на относительно не прихотливых агрегатах из сферы боевой авиации. В общих чертах, топливораспределительные механизмы тех годов представляли собой полностью механическую конструкцию и довольно-таки неплохо выполняли возложенные на них функции.

Отметим, что первое предназначение инжекторов крылось не в уменьшении количества потребляемого транспортом топлива или улучшение экологичности выхлопных газов, а в увеличении мощности двигателей. Отчасти инжекторные системы в этом плане себя оправдывали, но в начале 40-х годов в военной сфере активно начали использоваться реактивные моторы, поэтому первые вмиг потеряли имеющуюся актуальность. Вдобавок ко всему работа инжекторов механического типа не позволяла получать максимальный КПД от моторов летательных средств, ибо карбюраторы на тот момент были более гибкими в плане подстройки под режим работы двигателя.

Однако «вторая жизнь» топливной системы на основе инжектора началась с середины 80-х годов, они постепенно становились завсегдатаями автомобилестроительной сферы. Большую роль тут сыграло не уникальное устройство узла, а возможность снижения выброса вредных веществ в выхлопных газах при его использовании. К слову, старые механические инжекторы сильно отставали по всем параметрам от имеющихся карбюраторов, поэтому автомобильные инженеры были вынуждены в корне переделать конструкцию инжекторной системы питания. Отметим, у них это получилось, ведь недаром именно инжекторы остаются основными комплектующими топливосистем автомобилей.

Устройство и принципы работы инжектора

Инжектор (от английского – «injector») – в общем понятии, это устройство в виде струйного насоса, которое предназначено для нагнетания жидкостных, полужидкостных или газовых масс в некоторую ёмкость. В случае с автомобильным инжектором особенностей в интерпретации данного понятия не имеется. Единственное, что под инжекторным узлом в конструкции машины понимается не отдельный насос (форсунка), а их совокупность совместно с другими узлами, которые формируют единую топливную систему. Типовой вариант устройства автомобильного инжектора соответствует следующей схеме:

Управление инжектором, проще говоря, представленным выше насосом, осуществляется специальным блоком с электронной микросхемой. Именно он, основываясь на показаниях множества датчиков по типу идентификаторов оборотов, положения коленвала или температуры двигателя, осуществляет дозировку и грамотный впрыск топлива в камеры сгорания мотора.

Типовое устройство инжектора как единой системы предполагает совокупное использование следующих элементов:

  • форсунки и соединённые с ними камеры инжектора (то есть несколько отмеченных выше насосов, объединённых в синхронизированную систему);
  • блок управления (электронный мозг любой инжекторной системы , естественно, осуществляющий управление инжектором);
  • каталитический нейтрализатор (иначе называемый «дожигателем», который дожигает всё топливо, не догоревшее внутри мотора и вышедшее из камер сгорания вместе с выхлопными газами);
  • дополнительные узлы (проводка, соединяющая форсунки и блок управления, топливопровода, обеспечивающие доставку горючего до распределительного механизма, бензонасос и тому подобное).

Как видите, работа инжектора устроена без особых сложностей. Конечно, ремонтировать такую топливную систему отнюдь не просто, но понять принципы её работы можно вполне и без всяких проблем.

Интересно! Впервые инжекторы изложенного выше описания были применены немецкими компаниями – Bosch и Mercedes-Benz, в 1951 и 1954 года соответственно. Поначалу, подобные системы были дороги и бессмысленны в использовании из-за наличия привычных всем карбюраторов , однако с появлением более экологических требований к безопасности выхлопов топовые автоконцерны начали активно использовать именно инжекторы.

Виды и технические характеристики инжекторных систем

На сегодняшний день официально используемыми в автомобильной сфере считаются всего два вида инжекторов:

  • Электронный инжектор. Узел подобного вида работает строго по описанному выше принципу. То есть, топливо доставляется до форсунок, а далее посредством использования электронного блока управления происходит его верная дозировка и грамотная подача в камеры сгорания мотора. Работа инжекторов электронного типа наиболее удобна для беспроблемной эксплуатации любого автомобиля, поэтому именно они используются в конструкции практически всех современных автомобилей;
  • Механический инжектор. Этот же узел лишён головного управления в виде электронного «мозга». Если быть точнее, то работа инжектора механического типа основана на регулировке подачи горючего в мотор при помощи его клапанов (происходит дозировка посредством соединения форсунок с клапанами специальными трубками, первые, исходя из степени открытости вторых, подают оптимальное количество топлива в двигатель). Узлы с таким устройством считались некоторой инновацией в «инжекторной» сфере, однако в короткие сроки успели доказать свою несостоятельность и по сей день в серийном выпуске машин не применяются.

Вне зависимости от вида узла у него принято выделять основные свойства. На сегодняшний день среди технических характеристик инжектора стоит выделить один момент, а точнее – способ впрыска горючего в мотор. Безусловно, форсунки в любой инжекторной системе осуществляют непосредственный впрыск топлива в цилиндры (впускной коллектор), однако принципы доставки бензина могут отличаться. Так, существуют инжекторы:

  • С моновпрыском (центральным впрыском). В таких системах имеется лишь одна форсунка, которая и подаёт топливо в мотор. Сегодня инжекторы с моновпрыском не используются, поэтому заострять внимание на них нет необходимости;
  • С распределённым впрыском – самые используемые на данный момент. Их конструкция предполагает, что инжектор состоит из n-ого количества форсунок, которые подают топливо в каждый отдельный цилиндр. Среди инжекторных систем с распределённым впрыском выделяют несколько подтипов, а точнее:
    • непосредственный впрыск (часто называемый прямым) – горючее поступает в камеру сгорания напрямую;
    • одновременный впрыск – топливо подаётся синхронно всеми форсунками в каждый цилиндр двигателя;
    • попарно-параллельный впрыск – горючее поступает по парной схеме работы форсунок (то есть, один насос работает на «впуск», другой — на «выпуск»);
    • фазированный впрыск – подача бензина осуществляется исключительно на «впуск» при любом режиме работы.

Стоит отметить, что столь большое разнообразие инжекторов лишь отчасти оправдано, так как в подавляющем числе случаев используются системы либо с непосредственным, либо с одновременным видами впрыска.

Достоинства и недостатки инжекторов

В завершение сегодняшнего материала не лишним будет обратить внимание на то, чем инжектор хорош, а в чём способен доставить хлопот любому автомобилисту. Начнём, наверное, с достоинств инжекторных систем, которые включают в себя следующие положения:

  • Экономичность. Однозначно можно сказать, что инжекторы работают исключительно на своего «хозяина» по сравнению с теми же карбюраторами. Удивительно, но в некоторой степени схожие топливораспределительные узлы при одинаковых режимах работы мотора поставляют в него меньшее количество топлива. Во многом это связано с продуманным устройством инжектора и наличием у него электронного управления;
  • Получение большего КПД от двигателя. Опять же, удивительно. Несмотря на меньшее количества подаваемого топлива в мотор, при использовании инжектора получается добиться от силового агрегата большей мощности. Это также связано с грамотно организованным устройством узла, а особенно – его электронной составляющей;
  • Экологичность. Тут всё предельно просто, ибо в структуре любого инжектора имеется каталитический нейтрализатор, которые и придаёт ему большей экологичности, дожигая недогоревшее в моторе топливо;
  • Стабильность в плане работы. Повторимся, из-за грамотно организованного устройства инжекторы совершенно независимы в своём функционировании от погодных условий или подобных моментов.

Среди недостатков инжекторных систем стоит выделить лишь один аспект, а именно – их ремонт и отчасти эксплуатацию. В этом плане инжекторы довольно-таки прихотливы и неудобны для своих владельцев. В частности при желании успешно использовать узел подобного типа любому автомобилисту требуется: