Американский реактивный двигатель. Инженеры разработали новый реактивный двигатель. Американцы в числе последних

Реактивный самолет – это летательный аппарат, который осуществляет полет в воздухе за счет использования в своей конструкции воздушно-реактивных двигателей. Они могут быть турбореактивными, прямоточными, пульсирующего типа, жидкостными. Также реактивные самолеты могут быть укомплектованы двигателем ракетного типа. В современном мире самолеты с реактивными двигателями занимают большую часть всех современных летательных аппаратов.

Краткая история развития реактивных самолетов

Началом истории реактивных самолетов мира принято считать 1910 год, когда конструктор и инженер Румынии по имени Анри Конада создал летательный аппарат в основе с поршневым двигателем. Отличием от стандартных моделей было использование лопастного компрессора, который и приводил машину в движение. Особо активно конструктор начал утверждать в послевоенное время, что его аппарат был оснащен именно реактивным двигателем, хотя первоначально он заявлял категорически противоположное.

Изучая конструкцию перового реактивного самолета А. Конада, можно сделать несколько выводов. Первый – конструктивные особенности машины показывают, что расположенный впереди двигатель и его выхлопные газы убили бы пилота. Вторым вариантом развития мог быть только пожар на самолете. Именно об этом и говорил конструктор, при первом запуске огнем была уничтожена хвостовая часть.

Что касается самолетов реактивного типа, которые были изготовлены в 1940-е года, они имели совершенно другую конструкцию, когда двигатель и место пилота были удалены, и, как следствие, это повысило безопасность. В местах, где пламя двигателей соприкасалось с фюзеляжем, была установлена специальная жаростойкая сталь, что не приносило корпусу увечий и разрушений.

Первые прототипы и наработки

Конечно же, самолеты с турбореактивной силовой установкой имеют значительно больше преимуществ, нежели летательные аппараты с поршневыми двигателями.

    Самолет германского происхождения под обозначением He 178 был впервые поднят в воздух 27.08.1939 года.

    В 1941 году в небо поднялся подобный аппарат британских конструкторов с названием Gloster E.28/39.

Аппараты с ракетными двигателями

    He 176, созданный в Германии, осуществил первый отрыв от ВПП 20.07.1939 года.

    Советский летательный аппарат БИ-2 взлетел в мае 1942 года.

Самолеты с многокомпрессорным двигателем (их считают условно пригодными к полетам)

    Campini N.1 – изготовленный в Италии самолет впервые поднялся в воздух в конце августа 1940 года. была достигнута скорость полета в 375 км/час, а это еще меньше, чем поршневого аналога.

    Японский самолет «Ока» с двигателем Tsu-11 был предназначен для разового использования, поскольку это был самолет-бомба с пилотом-камикадзе на борту. Из-за поражения в войне так и не было окончательно доделана камера сгорания.

    За счет заимствованной технологии во Франции американцы также смогли изготовить собственную модель самолета с реактивным двигателем, которым стал Bell P-59. Машина имела два двигателя реактивного типа. Впервые отрыв от ВПП зафиксирован в октябре 1942 года. Нужно отметить, что эта машина была достаточно успешной, поскольку ее изготовление велось серийно. Аппарат имел некоторые преимущества над поршневыми аналогами, но все же в боевых действиях он участия не принимал.

Первые успешные реактивные прототипы

Германия:

    Созданный двигатель Jumo-004 был применен для нескольких экспериментальных и серийных самолетов. Нужно отметить, что это первая силовая установка в мире, которая имела осевой компрессор, как и современные истребители. США и СССР подобный тип двигателя получил значительно позже.

    Самолет Me.262 с установленным двигателем типа Jumo-004 впервые поднялся в воздух 18.07.1942 года, а уже через 43 месяца осуществил свой первый боевой вылет. Преимущества в воздухе данного истребителя были значительными. Была задержка запуска в серию из-за некомпетентности руководства.

    Реактивный разведчик-бомбардировщик типа Ar 234 изготовлен летом 1943 года, также был оснащен двигателем Jumo-004. Он активно применялся в последние месяцы войны, поскольку только он мог работать в ситуации с сильным преобладанием сил противника.

Великобритания:

  • Первым реактивным истребителем, изготовленным британцами, стал самолет Gloster Meteor, который был создан в марте 43-го года, а на вооружение его приняли 27.07.1944 года. В конце войны основной задачей истребителя был перехват самолетов Германии, которые несли крылатые ракеты типа Фау-1.

США :

    Первым реактивным истребителем в США стал аппарат под обозначением Lockheed F-80. Впервые отрыв от ВПП зафиксирован в январе 1944 года. На самолете был установлен двигатель типа Allison J33, который считается доработанной версией двигателя, установленного на аппарате Gloster Meteor. Боевое крещение произошло в Корейской войне, но вскоре он был заменен на самолет F-86 Sabre.

    Первый палубный истребитель с реактивным двигателем был готов в 1945 году, он обозначался как FH-1 Phantom.

    Реактивный бомбардировщик в США был готов в 1947 году, это был B-45 Tornado. Дальнейшее развитие позволило создать машину B-47 Stratojet с двигателем AllisonJ35. Этот двигатель был самостоятельной разработкой без внедрения технологий других стран. В итоге был изготовлен бомбардировщик, который эксплуатируют и сейчас, а именно В-52.

СССР:

    Первым реактивным самолетом в СССР стал МиГ-9. Первый взлет – 24.05.1946 года. Всего с заводов поступило 602 таких самолета.

    Як-15 – это истребитель с реактивным двигателем, который стоял на вооружении в ВВС. Этот самолет считается переходной моделью от поршневых к реактивным.

    МиГ-15 изготовлен в декабре 1947 года. Активно применялся в военном конфликте в Корее.

    Реактивный бомбардировщик Ил-22 изготовлен в 1947 году, он был первым в дальнейшем развитии бомбардировщиков.

Сверхзвуковые реактивные самолеты

    Единственный в истории авиастроения палубный бомбардировщик с возможностями сверхзвукового движения – самолет A-5 «Виджилент».

    Сверхзвуковые истребители палубного типа - F-35 и Як-141.

В гражданской авиации был создано только два пассажирских самолета с возможностью полета на сверхзвуковых скоростях. Первый был изготовлен на территории СССР в 1968 году и обозначался как Ту-144. Было изготовлено 16 таких самолетов, но после серии катастроф машина была снята с эксплуатации.

Второй пассажирский аппарат данного типа изготовила Франция и Великобритания в 1969 году. Всего было построено 20 самолетов, эксплуатация продолжалась с 1976 по 2003 год.

Рекорды реактивных самолетов

    Airbus A380 может расположить на своем борту 853 человека.

    Boeing 747 на протяжении 35 лет был самым большим пассажирским самолетом с пассажировместительностью в 524 человека.

Грузовые :

    Ан-225 «Мрия» – единственная машина в мире, которая обладает грузоподъемностью в 250 тонн. Первоначально был изготовлен для перевозки космической системы «Буран».

    Ан-124 «Руслан» – один из самых крупных самолетов мира с грузоподъемностью в 150 тонн.

    Был самым крупным грузовым самолетом до появления «Руслана», грузоподъемность равна 118 тоннам.

Максимальная скорость полета

    Летательный аппарат Lockheed SR-71 достигает скорости в 3 529 км/ч. Изготовлены 32 самолета, не может произвести взлет с полными баками.

    МиГ-25 – нормальная скорость полета в 3 000 км/ч, возможен разгон до 3 400 км/ч.

Будущие прототипы и разработки

Пассажирские:

Крупные:

  • High Speed Civil.
  • Ту-244.

Бизнес-класс:

    SSBJ, Ту-444.

    SAI Quiet, Aerion SBJ.

Гиперзвуковые:

  • Reaction Engines A2.

Управляемые лаборатории :

    Quiet Spike.

    Ту-144ЛЛ с двигателями от аппарата Ту-160.

Беспилотные:

  • Х-51
  • Х-43.

Классификация самолетов:


А
Б
В
Г
Д
И
К
Л

Интересная статейка о прошлом, настоящем и будущем нашей ракетной отрасли и перспектив полетов в космос.

Создатель лучших в мире жидкостных ракетных двигателей академик Борис Каторгин объясняет, почему американцы до сих пор не могут повторить наших достижений в этой области и как сохранить советскую фору в будущем .

21 июня 2012 года на Петербургском экономическом форуме прошло награждение лауреатов премии «Глобальная энергия». Авторитетная комиссия отраслевых экспертов из разных стран выбрала три заявки из представленных 639 и назвала лауреатов премии 2012 года, которую уже привычно называют «нобелевкой для энергетиков». В итоге 33 миллиона премиальных рублей в этом году разделили известный изобретатель из Великобритании профессор Родней Джон Аллам и двое наших выдающихся ученых — академики РАН Борис Каторгин и Валерий Костюк .

Все трое имеют отношение к созданию криогенной техники, исследованию свойств криогенных продуктов и их применению в различных энергетических установках. Академик Борис Каторгин был награжден «за разработки высокоэффективных жидкостных ракетных двигателей на криогенных топливах, которые обеспечивают при высоких энергетических параметрах надежную работу космических систем в целях мирного использования космоса». При непосредственном участии Каторгина, более пятидесяти лет посвятившего предприятию ОКБ-456, известному сейчас как НПО «Энергомаш», создавались жидкостные ракетные двигатели (ЖРД), рабочие характеристики которых и теперь считаются лучшими в мире. Сам Каторгин занимался разработкой схем организации рабочего процесса в двигателях, смесеобразованием компонентов горючего и ликвидацией пульсации в камере сгорания. Известны также его фундаментальные работы по ядерным ракетным двигателям (ЯРД) с высоким удельным импульсом и наработки в области создания мощных непрерывных химических лазеров.


В самые тяжелые для российских наукоемких организаций времена, с 1991-го по 2009 год, Борис Каторгин возглавлял НПО «Энергомаш», совмещая должности генерального директора и генерального конструктора, и умудрился не только сохранить фирму, но и создать ряд новых двигателей. Отсутствие внутреннего заказа на двигатели заставило Каторгина искать заказчика на внешнем рынке. Одним из новых двигателей стал РД-180, разработанный в 1995 году специально для участия в тендере, организованном американской корпорацией Lockheed Martin, выбиравшей ЖРД для модернизируемого тогда ракетоносителя «Атлас». В результате НПО «Энергомаш» подписало договор на поставку 101 двигателя и к началу 2012 года уже поставило в США более 60 ЖРД, 35 из которых успешно отработали на «Атласах» при выводе спутников различного назначения.


Перед вручением премии «Эксперт» побеседовал с академиком Борисом Каторгиным о состоянии и перспективах развития жидкостных ракетных двигателей и выяснил, почему базирующиеся на разработках сорокалетней давности двигатели до сих пор считаются инновационными, а РД-180 не удалось воссоздать на американских заводах.

Борис Иванович, в чем именно ваша заслуга в создании отечественных жидкостных реактивных двигателей, и теперь считающихся лучшими в мире?


— Чтобы объяснить это неспециалисту, наверное, нужно особое умение. Для ЖРД я разрабатывал камеры сгорания, газогенераторы; в целом руководил созданием самих двигателей для мирного освоения космического пространства. (В камерах сгорания происходит смешение и горение топлива и окислителя и образуется объем раскаленных газов, которые, выбрасываясь затем через сопла, создают собственно реактивную тягу; в газогенераторах также сжигается топливная смесь, но уже для работы турбонасосов, которые под огромным давлением нагнетают топливо и окислитель в ту же камеру сгорания.« Эксперт» .)


Вы говорите о мирном освоении космоса, хотя очевидно, что все двигатели тягой от нескольких десятков до 800 тонн, которые создавались в НПО « Энергомаш», предназначались прежде всего для военных нужд.


— Нам не пришлось сбросить ни одной атомной бомбы, мы не доставили на наших ракетах ни одного ядерного заряда к цели, и слава богу. Все военные наработки пошли в мирный космос. Мы можем гордиться огромным вкладом нашей ракетно-космической техники в развитие человеческой цивилизации. Благодаря космонавтике родились целые технологические кластеры: космическая навигация, телекоммуникации, спутниковое телевидение, системы зондирования.


Двигатель для межконтинентальной баллистической ракеты Р-9, над которым вы работали, потом лег в основу чуть ли не всей нашей пилотируемой программы.


— Еще в конце 1950-х я проводил расчетно-экспериментальные работы для улучшения смесеобразования в камерах сгорания двигателя РД-111, который предназначался для той самой ракеты. Результаты работы до сих пор применяются в модифицированных двигателях РД-107 и РД-108 для той же ракеты «Союз», на них было совершено около двух тысяч космических полетов, включая все пилотируемые программы.


Два года назад я брал интервью у вашего коллеги, лауреата « Глобальной энергии» академика Александра Леонтьева. В разговоре о закрытых для широкой публики специалистах, коим Леонтьев сам когда- то был, он упомянул Виталия Иевлева, тоже много сделавшего для нашей космической отрасли.


— Многие работавшие на оборонку академики были засекречены — это факт. Сейчас многое рассекречено — это тоже факт. Александра Ивановича я знаю прекрасно: он работал над созданием методик расчета и способов охлаждения камер сгорания различных ракетных двигателей. Решить эту технологическую задачу было нелегко, особенно когда мы начали максимально выжимать химическую энергию топливной смеси для получения максимального удельного импульса, повышая среди прочих мер давление в камерах сгорания до 250 атмосфер. Возьмем самый мощный наш двигатель — РД-170. Расход топлива с окислителем — керосином с жидким кислородом, идущим через двигатель, — 2,5 тонны в секунду. Тепловые потоки в нем достигают 50 мегаватт на квадратный метр — это огромная энергия. Температура в камере сгорания — 3,5 тысячи градусов Цельсия. Надо было придумать специальное охлаждение для камеры сгорания, чтобы она могла расчетно работать и выдерживала тепловой напор. Александр Иванович как раз этим и занимался, и, надо сказать, потрудился он на славу. Виталий Михайлович Иевлев — член-корреспондент РАН, доктор технических наук, профессор, к сожалению, довольно рано умерший, — был ученым широчайшего профиля, обладал энциклопедической эрудицией. Как и Леонтьев, он много работал над методикой расчета высоконапряженных тепловых конструкций. Работы их где-то пересекались, где-то интегрировались, и в итоге получилась прекрасная методика, по которой можно рассчитать теплонапряженность любых камер сгорания; сейчас, пожалуй, пользуясь ею, это может сделать любой студент. Кроме того, Виталий Михайлович принимал активное участие в разработке ядерных, плазменных ракетных двигателей. Здесь наши интересы пересекались в те годы, когда «Энергомаш» занимался тем же.


В нашей беседе с Леонтьевым мы затронули тему продажи энергомашевских двигателей РД-180 в США, и Александр Иванович рассказал, что во многом этот двигатель — результат наработок, которые были сделаны как раз при создании РД-170, и в каком- то смысле его половинка. Что это — действительно результат обратного масштабирования?


— Любой двигатель в новой размерности — это, конечно, новый аппарат. РД-180 с тягой 400 тонн действительно в два раза меньше РД-170 с тягой 800 тонн. У РД-191, предназначенного для нашей новой ракеты «Ангара», тяга и вовсе 200 тонн. Что же общего у этих двигателей? Все они имеют по одному турбонасосу, но камер сгорания у РД-170 четыре, у «американского» РД-180 — две, у РД-191 — одна. Для каждого двигателя нужен свой турбонасосный агрегат — ведь если однокамерный РД-170 потребляет примерно 2,5 тонны топлива в секунду, для чего был разработан турбонасос мощностью 180 тысяч киловатт, в два с лишним раза превосходящий, например, мощность реактора атомного ледокола «Арктика», то двухкамерный РД-180 — лишь половину, 1,2 тонны. В разработке турбонасосов для РД-180 и РД-191 я участвовал напрямую и в то же время руководил созданием этих двигателей в целом.


Камера сгорания, значит, на всех этих двигателях одна и та же, только количество их разное?


— Да, и это наше главное достижение. В одной такой камере диаметром всего 380 миллиметров сгорает чуть больше 0,6 тонны топлива в секунду. Без преувеличения, эта камера — уникальное высокотеплонапряженное оборудование со специальными поясами защиты от мощных тепловых потоков. Защита осуществляется не только за счет внешнего охлаждения стенок камеры, но и благодаря хитроумному способу «выстилания» на них пленки горючего, которое, испаряясь, охлаждает стенку. На базе этой выдающейся камеры, равной которой в мире нет, мы изготавливаем лучшие свои двигатели: РД-170 и РД-171 для «Энергии» и «Зенита», РД-180 для американского «Атласа» и РД-191 для новой российской ракеты «Ангара».


— « Ангара» должна была заменить « Протон- М» еще несколько лет назад, но создатели ракеты столкнулись с серьезными проблемами, первые летные испытания неоднократно откладывались, и проект вроде бы продолжает буксовать.


— Проблемы действительно были. Сейчас принято решение о запуске ракеты в 2013 году. Особенность «Ангары» в том, что на основе ее универсальных ракетных модулей можно создать целое семейство ракетоносителей грузоподъемностью от 2,5 до 25 тонн для вывода грузов на низкую околоземную орбиту на базе универсального же кислородно-керосинового двигателя РД-191. «Ангара-1″ имеет один двигатель, «Ангара-3″ — три с общей тягой 600 тонн, у «Ангары-5″ будет 1000 тонн тяги, то есть она сможет выводить на орбиту больше грузов, чем «Протон». К тому же вместо очень токсичного гептила, который сжигается в двигателях «Протона», мы используем экологически чистое топливо, после сгорания которого остаются лишь вода да углекислый газ.


Как получилось, что тот же РД-170, который создавался еще в середине 1970- х, до сих пор остается, по сути, инновационным продуктом, а его технологии используются в качестве базовых для новых ЖРД?


— Похожая история случилась с самолетом, созданным после Второй мировой Владимиром Михайловичем Мясищевым(дальний стратегический бомбардировщик серии М, разработка московского ОКБ-23 1950-х годов. — « Эксперт» ). По многим параметрам самолет опережал свое время лет эдак на тридцать, и элементы его конструкции потом заимствовали другие авиастроители. Так и здесь: в РД-170 очень много новых элементов, материалов, конструкторских решений. По моим оценкам, они не устареют еще несколько десятилетий. В этом заслуга прежде всего основателя НПО «Энергомаш» и его генерального конструктора Валентина Петровича Глушко и членкора РАНВиталия Петровича Радовского, возглавившего фирму после смерти Глушко. (Отметим, что лучшие в мире энергетические и эксплуатационные характеристики РД-170 во многом обеспечиваются благодаря решению Каторгиным проблемы подавления высокочастотной неустойчивости горения за счет разработки антипульсационных перегородок в той же камере сгорания. — « Эксперт» .) А двигатель РД-253 первой ступени для ракетоносителя «Протон»? Принятый на вооружение еще в 1965 году, он настолько совершенен, что до сих пор никем не превзойден. Именно так учил конструировать Глушко — на пределе возможного и обязательно выше среднемирового уровня. Важно помнить и другое: страна инвестировала в свое технологическое будущее. Как было в Советском Союзе? Министерство общего машиностроения, в ведении которого, в частности, находились космос и ракеты, только на НИОКР тратило 22 процента своего огромного бюджета — по всем направлениям, включая двигательное. Сегодня объем финансирования исследований намного меньше, и это говорит о многом.


Не означает ли достижение этими ЖРД неких совершенных качеств, причем случилось это полвека назад, что ракетный двигатель с химическим источником энергии в каком- то смысле изживает себя: основные открытия сделаны и в новых поколениях ЖРД, сейчас речь идет скорее о так называемых поддерживающих инновациях?


— Безусловно нет. Жидкостные ракетные двигатели востребованы и будут востребованы еще очень долго, потому что никакая другая техника не в состоянии более надежно и экономично поднять груз с Земли и вывести его на околоземную орбиту. Они безопасны с точки зрения экологии, особенно те, что работают на жидком кислороде и керосине. Но для полетов к звездам и другим галактикам ЖРД, конечно, совсем непригодны. Масса всей метагалактики — 1056 граммов. Для того чтобы разогнаться на ЖРД хотя бы до четверти скорости света, потребуется совершенно невероятный объем топлива — 103200 граммов, так что даже думать об этом глупо. У ЖРД есть своя ниша — маршевые двигатели. На жидкостных двигателях можно разогнать носитель до второй космической скорости, долететь до Марса, и все.


Следующий этап — ядерные ракетные двигатели?


— Конечно. Доживем ли мы еще до каких-то этапов — неизвестно, а для разработки ЯРД многое было сделано уже в советское время. Сейчас под руководством Центра Келдыша во главе с академиком Анатолием Сазоновичем Коротеевым разрабатывается так называемый транспортно-энергетический модуль. Конструкторы пришли к выводу, что можно создать менее напряженный, чем был в СССР, ядерный реактор с газовым охлаждением, который будет работать и как электростанция, и как источник энергии для плазменных двигателей при передвижении в космосе. Такой реактор проектируется сейчас в НИКИЭТ имени Н. А. Доллежаля под руководством члена-корреспондента РАН Юрия Григорьевича Драгунова. В проекте также участвует калининградское КБ «Факел», где создаются электрореактивные двигатели. Как и в советское время, не обойдется без воронежского КБ химавтоматики, где будут изготавливаться газовые турбины, компрессоры, чтобы по замкнутому контуру гонять теплоноситель — газовую смесь.


А пока полетаем на ЖРД?


— Конечно, и мы четко видим перспективы дальнейшего развития этих двигателей. Есть задачи тактические, долгосрочные, тут предела нет: внедрение новых, более жаростойких покрытий, новых композитных материалов, уменьшение массы двигателей, повышение их надежности, упрощение схемы управления. Можно внедрить ряд элементов для более тщательного контроля за износом деталей и других процессов, происходящих в двигателе. Есть задачи стратегические: к примеру, освоение в качестве горючего сжиженного метана и ацетилена вместе с аммиаком или трехкомпонентного топлива. НПО «Энергомаш» занимается разработкой трехкомпонентного двигателя. Такой ЖРД мог бы применяться в качестве двигателя и первой, и второй ступени. На первой ступени он использует хорошо освоенные компоненты: кислород, жидкий керосин, а если добавить еще около пяти процентов водорода, то значительно увеличится удельный импульс — одна из главных энергетических характеристик двигателя, а это значит, что можно отправить в космос больше полезного груза. На первой ступени вырабатывается весь керосин с добавкой водорода, а на второй тот же самый двигатель переходит от работы на трехкомпонентном топливе на двухкомпонентное — водород и кислород.


Мы уже создали экспериментальный двигатель, правда, небольшой размерности и тягой всего около 7 тонн, провели 44 испытания, сделали натурные смесительные элементы в форсунки, в газогенераторе, в камере сгорания и выяснили, что можно сначала работать на трех компонентах, а потом плавно переходить на два. Все получается, достигается высокая полнота сгорания, но чтобы идти дальше, нужен более крупный образец, нужно дорабатывать стенды, чтобы запускать в камеру сгорания компоненты, которые мы собираемся применять в настоящем двигателе: жидкие водород и кислород, а также керосин. Думаю, это очень перспективное направление и большой шаг вперед. И надеюсь кое-что успеть сделать при жизни.


Почему американцы, получив право на воспроизведение РД-180, не могут сделать его уже много лет?


— Американцы очень прагматичны. В 1990-х, в самом начале работы с нами, они поняли, что в энергетической области мы намного опередили их и надо у нас эти технологии перенимать. К примеру, наш двигатель РД-170 за один запуск за счет большего удельного импульса мог вывезти полезного груза на две тонны больше, чем их самый мощный F-1, что означало по тем временам 20 миллионов долларов выигрыша. Они объявили конкурс на двигатель тягой 400 тонн для своих «Атласов», который выиграл наш РД-180. Тогда американцы думали, что они начнут с нами работать, а года через четыре возьмут наши технологии и будут сами их воспроизводить. Я им сразу сказал: вы затратите больше миллиарда долларов и десять лет. Четыре года прошло, и они говорят: да, надо шесть лет. Прошли еще годы, они говорят: нет, надо еще восемь лет. Прошло уже семнадцать лет, и они ни один двигатель не воспроизвели. Им сейчас только на стендовое оборудование для этого нужны миллиарды долларов. У нас на «Энергомаше» есть стенды, где в барокамере можно испытывать тот же двигатель РД-170, мощность струи которого достигает 27 миллионов киловатт.


Я не ослышался — 27 гигаватт? Это больше установленной мощности всех АЭС « Росатома».


— Двадцать семь гигаватт — это мощность струи, которая развивается относительно за короткое время. При испытаниях на стенде энергия струи сначала гасится в специальном бассейне, затем в трубе рассеивания диаметром 16 метров и высотой 100 метров. Чтобы построить подобный стенд, в котором помещается двигатель, создающий такую мощность, надо вложить огромные деньги. Американцы сейчас отказались от этого и берут готовое изделие. В результате мы продаем не сырье, а продукт с огромной добавленной стоимостью, в который вложен высокоинтеллектуальный труд. К сожалению, в России это редкий пример хайтек-продаж за границу в таком большом объеме. Но это доказывает, что при правильной постановке вопроса мы способны на многое.


Борис Иванович, что надо сделать, чтобы не растерять фору, набранную советским ракетным двигателестроением? Наверное, кроме недостатка финансирования НИОКР очень болезненна и другая проблема — кадровая?


— Чтобы остаться на мировом рынке, надо все время идти вперед, создавать новую продукцию. Видимо, пока нас до конца не прижало и гром не грянул. Но государству надо осознать, что без новых разработок оно окажется на задворках мирового рынка, и сегодня, в этот переходный период, пока мы еще не доросли до нормального капитализма, в новое должно прежде всего вкладывать оно — государство. Затем можно передавать разработку для выпуска серии частной компании на условиях, выгодных и государству, и бизнесу. Не верю, что придумать разумные методы созидания нового невозможно, без них о развитии и инновациях говорить бесполезно.


Кадры есть. Я руковожу кафедрой в Московском авиационном институте, где мы готовим и двигателистов, и лазерщиков. Ребята умнющие, они хотят заниматься делом, которому учатся, но надо дать им нормальный начальный импульс, чтобы они не уходили, как сейчас многие, писать программы для распределения товаров в магазинах. Для этого надо создать соответствующую лабораторную обстановку, дать достойную зарплату. Выстроить правильную структуру взаимодействия науки и Министерства образования. Та же Академия наук решает много вопросов, связанных с кадровой подготовкой. Ведь среди действующих членов академии, членов-корреспондентов много специалистов, которые руководят высокотехнологическими предприятиями и научно-исследовательскими институтами, мощными КБ. Они прямо заинтересованы, чтобы на приписанных к их организациям кафедрах воспитывались необходимые специалисты в области техники, физики, химии, чтобы они сразу получали не просто профильного выпускника вуза, а готового специалиста с некоторым жизненным и научно-техническим опытом. Так было всегда: самые лучшие специалисты рождались в институтах и на предприятиях, где существовали образовательные кафедры. У нас на «Энергомаше» и в НПО Лавочкина работают кафедры филиала МАИ «Комета», которой я руковожу. Есть старые кадры, которые могут передать опыт молодым. Но времени осталось совсем немного, и потери будут безвозвратные: для того, чтобы просто вернуться на существующий сейчас уровень, придется затратить гораздо больше сил, чем сегодня надо для его поддержания.


А вот и довольно свежие новости:


Самарское предприятие «Кузнецов» заключило предварительный договор на поставку Вашингтону 50 НК-33 - силовых установок, разработанных для советской лунной программы.

Опцион (разрешение) на поставку до 2020 года указанного количества двигателей заключен с американской корпорацией «Орбитал сайенсиз» (Orbital Sciences), выпускающей спутники и ракеты-носители, и компанией «Аэроджет» (Аerojet), являющейся одним из крупнейших в США производителей ракетных двигателей. Речь идет о предварительной договоренности, поскольку опционный договор предполагает право, но не обязательство покупателя совершить покупку на заранее определенных условиях. Два модифицированных двигателя НК-33 используются на первой ступени разработанной в США по контракту с НАСА ракеты-носителя «Антарес» (проектное название «Таурус-2»). Носитель предназначен для доставки грузов на МКС. Первый его запуск запланирован на 2013 год. Двигатель НК-33 разработан для ракеты-носителя Н1, которая должна была доставить советских космонавтов на Луну.


Была еще как то в блоге и довольно спорная информация, описывающая

Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

December 10th, 2012

Продолжая цикл статей (лишь потому что мне нужен еще один реферат, теперь по предмету "двигатели") - статья о весьма перспективном и многообещающем проекте двигателя SABRE. В общем то о нем и в рунете немало написано, но по большей части весьма сумбурные заметки и дифирамбы на сайтах новостных агентств, а вот статья на английской википедии мне весьма глянулась, они вообще, приятно богаты деталями и подробностями - статьи на английской википедии.

Так что в основу сего поста (и моего будущего реферата) легла именно статься, в оригинале лежащая по адресу: http://en.wikipedia.org/wiki/SABRE_(rocket_engine) , так же было немного добавлено отсебятины и пояснений, и собран по просторам инета иллюстративный материал (вот чем чем, а богатством картинок статьи на википедии не отличаются)

Ниже следует


SABRE (Synergistic Air-Breathing Rocket Engine) – Синергичный воздушно-реактивный ракетный двигатель – концепт, разрабатываемый компанией Reaction Engines Limited, гиперзвуковой гибридный воздушно реактивный/ракетный двигатель с предварительным охлаждением. Двигатель разрабатывается для обеспечения возможности одноступенчатого выхода на орбиту для аэрокосмической системы Skylon. SABRE представляет собой эволюционное развитие серии LACE и LACE-подобных двигателей, разрабатывавшихся Аланом Бондом в начале/середине 1980 в рамках проекта HOTOL.

Конструктивно это один двигатель с комбинированным рабочим циклом, имеющий два режима работы. В воздушно-реактивном режиме сочетается турбокомпрессор с легким теплообменником-охладителем, расположенным непосредственно за конусом воздухозаборника. На высокой скорости теплообменник охлаждает горячий, сжатый воздухозаборником воздух, что в позволяет обеспечить необычайно высокую степень сжатия в двигателе. Сжатый воздух далее подается в камеру сгорания, как у обычного ракетного двигателя, где он обеспечивает воспламенение жидкого водорода. Низкая температура воздуха позволяет использовать легкие сплавы и снизить общий вес двигателя – что весьма критично для выхода на орбиту. Добавим, что в отличии от LACE концептов, предшествувавших этому двигателю, SABRE не сжижает воздух, что дает большую эффективность.


Рис.1. Аэрокосмический ЛА Skylon и двигатель SABRE

После закрытия конуса воздухозаборника на скорости М = 5,14 и высоте 28,5 км, система продолжает работать в закрытом цикле высокопроизводительного ракетного двигателя, потребляющего жидкий кислород и жидкий водород с находящихся на борту баков, позволяя Skylon достичь орбитальной скорости после выхода из атмосферы в крутом наборе высоты.

Так же, на основе двигателя SABRE, был разработан воздушно-реактивный, называемый Scimitar, для перспективного гиперзвукового пассажирского авиалайнера А2, разрабатываемого в рамках программы LAPCAT, финансированной Европейским Союзом.

В ноябре 2012 компания Reaction Engines объявила о успешном завершении серии испытаний, которые подтверждают работоспособность системы охлаждения двигателя – одного из главных препятствий на пути к завершению проекта. Европейское космическое агенство (ESA) так же оценило теплообменник-охладитель двигателя SABRE, и подтвердило наличие технологий, необходимых для воплощения двигателя в металле.



Рис.2. Модель двигателя SABRE

История

Идея двигателя с предварительным охлаждением впервые возникла у Роберта Кармайкла в 1955 году. За этим следовала идея двигателя с сжижением воздуха (LACE), первоначально изучалась Marquardt и General Dynamics в 1960х годах, как часть работ US Air Force по проекту Aerospaceplane.
LACE система располагается непосредственно за сверхзвуковым воздухозаборником – таким образом сжатый воздух попадает сразу в теплообменник где моментально охлаждается с использование некоторого количества жидкого водорода, хранящегося на борту в качестве топлива. Полученный жидкий воздух затем обрабатывается, для извлечения жидкого кислорода, который поступает в двигатель. Однако количество прошедшего через теплообменник и нагретого водорода, значительно больше, чем может быть сожжено в двигателе, и его избыток просто сливается за борт (тем не менее он тоже дает некоторый прирост тяги).

В 1989 года, когда финансирование проекта HOTOL было прекращено, Бонд и другие специалисты образуют компанию Reaction Engines Limited для продолжения исследования. Теплообменник двигателя RB545 (который предполагалось использовать в проекте HOTOL) имел некоторые проблемы с хрупкостью конструкции, а так же относительно высоким расходом жидкого водорода. Так же его использование было невозможно – патент на двигатель принадлежал компании Rolls Royce, и самый существенный аргумент – двигатель был объявлен совершенно секретным. По этому Бонд пошел на разработку нового двигателя SABRE, развивая идеи, заложенные в предыдущий проект.

По состоянию на ноябрь 2012 года, было завершено тестирование оборудования в рамках темы «Технология теплообменника, критичная для гибридного ракетного двигателя, питаемого воздухом и жидким кислородом». Это был важный этап в процессе разработки SABRE, который продемонстрировал потенциальным инвесторам жизнеспособность технологии. Двигатель основан на теплообменнике, способном охладить поступающий воздух до -150°C (-238°F). Охлажденный воздух смешивается с жидким водородом и сгорая, обеспечивает тягу для атмосферного полета, перед переключением на жидкий кислород из баков, при полете вне атмосферы. Успешные испытания этой, столь критической технологи, подтвердили что теплообменник может обеспечить потребности двигателя в получении достаточного количества кислорода из атмосферы для работы с высокой эффективностью в условиях низко-высотного полета.

На авиашоу Фарнборо 2012 Дэвид Уиллетс, являющийся министром по делам университетов и науки Объединенного королевства, выступил по этому поводу с речью. В частности, он сказал, что данный двигатель, разработчиком которого является компания Reaction Engines, реально может повлиять на условия игры, действующие в космической отрасли. Успешно завершившиеся испытания системы предварительного охлаждения являются подтверждением высокой оценки концепции двигателя, которую сделало Космическое агентство Великобритании в 2010 году. Министр также добавил, что если однажды им удастся использовать данную технологию для осуществления собственных полетов коммерческого назначения, то это, несомненно, будет фантастическим по своему масштабу достижением.

Министр также отметил, что существует маленькая вероятность того, что Европейское космическое агентство согласится финансировать Skylon, поэтому Великобритания должна быть готова заниматься строительством космолета по большей части на свои средства.



Рис.3. Аэрокосмический ЛА Skylon - компоновка

Следующий этап программы SABRE предусматривает наземные испытания масштабной модели двигателя, способной продемонстрировать полный цикл. ESA выразило уверенность в успешной постройке демонстратора и заявило о том, что он будет представлять собой «важную веху в развитии этой программы и прорыв в вопросе двигательных установок по всему миру»

Конструкция



Рис.4. Компоновка двигателя SABRE

Подобно RB545, конструкция SABRE скорее ближе к традиционному ракетному двигателю, чем к воздушно реактивному. Гибридный Воздушно-реактивный/Ракетный двигатель с предварительным охлаждением использует жидкое водородное топливо в сочетании с окислителем, поставляемым либо в виде газообразного воздуха с помощью компрессора, либо в виде жидкого кислорода, поставляемого из топливных баков с помощью турбонасоса.

В передней части двигателя расположен простой осесимметричный воздухозаборник в виде конуса, который тормозит воздух до дозвуковых скоростей, используя всего два отраженных скачка уплотнения.

Часть воздуха через теплообменник в центральную часть двигателя, а оставшийся проходит через кольцевой канал в второй контур, представляющий собой обычный ПВРД. Центральная часть, расположенная за теплообменником, представляет собой турбокомпрессор, приводящийся в движение газообразным гелием, циркулирующим по замкнутому каналу цикла Брайтона. Сжатый компрессором воздух поступает под высоким давлением в четыре камеры сгорания ракетного двигателя комбинированного цикла.



Рис.5. Упрощенный цикл работы двигателя SABRE

Теплообменник

Поступающий в двигатель на сверх/гиперзвуковых скоростях воздух становится очень горячим после торможения и сжатия в воздухозаборнике. С высокими температурами в реактивных двигателях традиционно справлялись используя тяжелые сплавы на основе меди или никеля, за счет снижения степени сжатия компрессора, а так же снижением оборотов, во избежание перегрева и плавления конструкции. Однако для одноступенчатого КА такие тяжелые материалы неприменимы, и необходима максимально возможная тяга, для выхода на орбиту в кратчайшее время, чтобы минимизировать тяжесть потерь.

При использовании газообразного гелия в качестве теплоносителя, воздух в теплообменнике существенно охлаждается от 1000°C до -150°C, при этом избегая сжижения воздуха или конденсации водяного пара на стенках теплообменника.



Рис.6. Модель одно из модулей теплообменника

Предыдущие версии теплообменника, например применяемые в проекте HOTOL пропускали водородное топливо непосредственно через теплообменник, но использование гелия как промежуточного контура между воздухом и холодным топливом сняло проблему водородной хрупкости конструкции теплообменника. Однако резкое охлаждение воздуха сулит определенные проблемы – необходимо предотвратить блокировку теплообменника замороженным водяным паром и иными фракциями. В ноябре 2012 года был продемонстрирован образец теплообменника, способный охладить атмосферный воздух до -150°C за 0,01 с.
Одной из инноваций теплообменника SABRE служит спиральное размещение трубок с халагентом, что значительно обещает поднять его эффективность.



Рис.7. Опытный образец теплообменника SABRE

Компрессор

На скорости М=5 и высоте 25 километров, что составляет 20% орбитальной скорости и высоты, необходимой для выхода на орбиту, охлажденный в теплообменнике воздух попадает в весьма обыкновенный турбокомпрессор, конструктивно подобный используемым в обычных турбореактивных двигателях, но обеспечивающий необычайно высокую степень сжатия, благодаря крайне низкой температуре входящего воздуха. Это позволяет сжать воздух до 140 атмосфер перед подачей в камеры сгорания основного двигателя. В отличии от турбореактивных двигателей, турбокомпрессор приводится в действие турбиной, расположенной в гелиевом контуре, а не от действия продуктов сгорания, как в обычных турбореактивных двигателей. Таким образом турбокомпрессор работает на тепле, полученным гелем в теплообменнике.

Гелиевый цикл

Тепло переходит от воздуха к гелию. Горячий гелий из теплообменника «гелий-воздух» охлаждается в теплообменнике «гелий-водород», отдавая тепло жидкому водородному топливу. Контур, в котором циркулирует гелий, работает согласно циклу Брайтона, как охлаждая двигатель в критических местах, так и для привода энергетических турбин и многочисленных агрегатов двигателя. Остаток тепловой энергии используется для испарения части водорода, который сжигается в внешнем, прямоточном контуре.

Глушитель

Для охлаждения гелия, его прокачивают через бак с азотом. В настоящее время для тестов используется не жидкий азот а вода, которая испаряется, понижая температуру гелия и глушит шум от выхлопных газов.

Двигатель

Благодаря тому, что гибридный ракетный двигатель обладает далеко не нулевой статической тягой, летательный аппарат может взлететь в обычном, воздушно-реактивном режиме, без посторонней помощи, подобно оснащенным обычными турбореактивными двигателями. При наборе высоты и падении атмосферного давления, все больше и больше воздуха направляется в компрессор, а эффективность сжатия в воздухозаборнике только снижается. В этом режиме реактивный двигатель может работать на намного большей высоте, чем это было возможно в обычном случае.
При достижении скорости М=5.5 воздушнореактивный двигатель становится не эффективным и отключается, и теперь в ракетный двигатель поступает хранящийся на борту жидкий кислород и жидкий водород, так вплоть до достижения орбитальной скорости (соизмеримо с М=25). Турбонасосные агрегаты приводятся тем же гелиевым контуром, который теперь получает тепло в специальных «предварительных камерах сгорания».
Необычное конструкционное решение системы охлаждения камер сгорания - в качестве охлаждающего вещества используется окислитель (воздух/жидкий кислород) вместо жидкого водорода, во избежание перерасхода водорода и нарушения стехиометрического соотношения (соотношение топлива к окислителю).

Второй существенный момент – реактивное сопло. Эффективность работы реактивного сопла зависит от его геометрии и атмосферного давления. В то время как геометрия сопла остается неизменной, давление существенно изменяется с высотой, следовательно сопла, высокоэффективные в нижних слоях атмосферы, существенно теряют свою эффективность с достижением больших высот.
В традиционных, многоступенчатых системах, это преодолевается простым использованием разной геометрии, для каждой ступени и соответствующего этапа полета. Но в одноступенчатой системе мы все время используем одно и то же сопло.



Рис.8. Сравнение работы различных реактивных сопел в атмосфере и вакууме

Как выход планируется использование специального Expansion-Deflection (ED nozzle) – регулируемого реактивного сопла разрабатываемого в рамках проекта STERN , которое состоит из традиционного колокола (правда сравнительно короче обычного), и регулируемого центрального тела, которое отклоняет поток газа к стенкам. Изменяя положение центрального тела, можно добиться того что выхлоп не займет всю площадь донного среза, а лишь кольцеобразный участок, регулируя занимаемую им площадь соответственно атмосферному давлению.

Так же, в многокамерном двигателе, можно регулировать вектор тяги, изменяя площадь сечения, а следовательно и вклад в общую тягу, каждой камеры.



Рис.9. Реактивное сопло Expansion-Deflection (ED nozzle)

Прямоточный контур

Отказ от сжижения воздуха поднял эффективность работы двигателя, снизив затраты теплоносителя путем снижения энтропии. Однако даже простое охлаждение воздуха требует больше водорода, чем может быть сожжено в первом контуре двигателя.

Избыток водорода сливается за борт, но не просто так, а сжигается в ряде камер сгорания, которые расположены в внешнем кольцевом воздушном канале, образующем прямоточную часть двигателя, в которую поступает воздух, пошедший в обход теплообменника. Второй, прямоточный контур снижает потери вследствие сопротивления воздуха, не попавшего в теплообменник, и так же дает некоторую часть тяги.
На низких скоростях в обход теплообменника/компрессора идет очень большое количество воздуха, а с ростом скорости, для сохранения эффективности большая часть воздуха наоборот, попадает в компрессор.
Это отличает систему от турбопрямоточного двигателя, где все обстоит с точностью до наоборот – на малых скоростях большие массы воздуха идут через компрессор, а на больших – в его обход, через прямоточный контур, который становится настолько эффективным, что берет на себя ведущую роль.

Производительность

Расчетная тяговооруженность SABRE предполагается свыше 14 единиц, при этом тяговооруженность обычных реактивных двигателей лежит в пределах 5, и всего лишь 2 для сверхзвуковых прямоточных двигателей. Столь высокая производительность получена благодаря использованию сверхохлажденного воздуха, который становится весьма плотным и требует меньшего сжатия, и, что более существенно, благодаря низким рабочим температурам стало возможным использовать легкие сплавы для большей части конструкции двигателя. Общая производительность обещает быть выше, чем в случае RB545 или сверхзвуковых прямоточных двигателей.

Двигатель имеет высокий удельный импульс в атмосфере, который достигает 3500 сек. Для сравнения обычный ракетный двигатель имеет удельный импульс в лучшем случае около 450, и даже перспективный «тепловой» ядерный ракетный двигатель обещает достичь лишь величины 900 сек.

Комбинация высокой топливной эффективности и низкой массы двигателя дает Skylon возможность достичь орбиты в одноступенчатом режиме, при этом работая как воздушно-реактивный до скорости М=5,14 и высоты 28,5 км. При этом аэрокосмический аппарат достигнет орбиты с большой полезной нагрузкой относительно взлетного веса, какая не могла быть ранее достигнутой ни одним, неядерным транспортным средством.

Подобно RB545, идея предварительного охлаждения увеличивает массу и сложность системы, что в обычных условиях служит антитезисом принципу конструирования ракетных систем. Также теплообменник очень агрессивная и сложная часть конструкции двигателя SABRE. Правда следует отметить что масса этого теплообменника предполагается на порядок ниже существующих образцов, и эксперименты показали что это может быть достигнуто. Экспериментальный теплообменник добился теплообмена почти в 1 ГВт/м2, что считается мировым рекордом. Небольшие модули будущего теплообменника уже изготовлены.

Потери от дополнительного веса системы компенсируются в закрытом цикле (теплообменник-турбокомпрессор) также как дополнительный вес крыльев Skylon увеличивая общий вес системы, так же способствуют общему увеличению эффективности больше, чем снижению ее. Это большей частью компенсируется разными траекториями полета. Обычные ракеты-носители стартуют вертикально, с крайне низкими скоростями (если говорить о тангенциальной а не нормальной скорости), этот, на первый взгляд неэффективных ход, позволяет быстрей пронзить атмосферу и набирать тангенциальную скорость уже в безвоздушной среде, не теряя скорость на трении о воздух.

В то же время большая топливная эффективность двигателя SABRE позволяют очень пологий подъем (при котором растет больше тангенциальная, чем нормальная составляющая скорости), воздух скорее способствует чем тормозит систему (окислитель и рабочее тело для двигателя, подъемная сила для крыльев), дает в итоге намного меньший расход топлива для достижения орбитальной скорости.

Некоторые характеристики

Тяга в пустоте – 2940 кН
Тяга на уровне моря – 1960 кН
Тяговоруженность (двигателя) – около 14 (в атмосфере)
Удельный импульс в вакууме – 460 сек
Удельный импульс на уровне моря – 3600 сек

Преимущества

В отличии от традиционных ракетных двигателей, и подобно иным типам воздушно-реактивных двигателей, гибридный реактивный двигатель может использовать воздух, для сжигания топлива, снижая необходимый вес ракетного топлива, и тем увеличивая вес полезной нагрузки.

ПВРД и ГПВРД должны провести большое количество времени в нижних слоях атмосферы, чтобы достичь скорости, достаточной для выхода на орбиту, что выводит на передний план проблему интенсивного нагрева на гиперзвуке, а так же потери в следствии значительно веса и сложности теплозащиты.

Гибридный реактивный двигатель подобный SABRE нуждается только в достижении низкой гиперзвуковой скорости (напомним: гиперзвук – все что после М=5, следовательно М = 5,14 это самое начало гиперзвукового диапазона скоростей) в нижних слоях атмосферы, перед переходом на закрытый цикл работы и крутом подъеме с набором скорости в ракетном режиме.

В отличии от ПВРД или ГПВРД, SABRE способен обеспечить высокую тягу от нулевой скорости и до М=5,14, от земли и до больших высот, с высокой эффективностью во всем диапазоне. Кроме того, возможность создания тяги при нулевой скорости означает возможность испытаний двигателя на земле, что значительно сокращает стоимость разработки.

Так же вашему вниманию предлагается некоторое число ссылок

Военно-морские силы США планируют в будущем провести модернизацию силовых газотурбинных установок, которые в настоящее время установлены на их самолетах и кораблях, поменяв обычные двигатели с циклом Брайтона на детонационные ротационные двигатели. За счет этого предполагается экономия топлива на сумму около 400 миллионов долларов ежегодно. Однако серийное использование новых технологий возможно, по оценкам экспертов, не ранее, чем через десятилетие.


Разработки ротационных, или спиновых ротационных двигателей в Америке проводятся Научно-исследовательской лабораторией флота США. Согласно первоначальным подсчетам, новые двигатели будут обладать большей мощностью, а также примерно на четверть экономичнее обычных двигателей. При этом, основные принципы работы силовой установки останутся прежними – газы от сгоревшего топлива будут поступать в газовую турбину, вращая ее лопасти. Согласно данным лаборатории ВМС США, даже в относительно далеком будущем, когда весь американский флот будет приводиться в действие при помощи электричества, за выработку энергии по-прежнему будут отвечать газовые турбины, в определенной степени видоизмененные.

Напомним, что изобретение пульсирующего воздушно-реактивного двигателя приходится на конец девятнадцатого века. Автором изобретения был шведский инженер Мартин Виберг. Широкое распространение новые силовые установки получили в годы Второй мировой войны, хотя они значительно уступали по своим техническим характеристикам авиадвигателям, которые существовали в то время.

Надо заметить, что на данный момент времени американский флот насчитывает 129 кораблей, на которых используется 430 газотурбинных двигателя. Каждый год расходы на обеспечение их топливом составляют порядка 2 миллиардов долларов. В будущем, когда современные двигатели будут заменены новыми, изменятся и объемы затрат на топливную составляющую.

Двигатели внутреннего сгорания, используемые в настоящее время, работают по циклу Брайтона. Если определить суть данного понятия в нескольких словах, то все сводится к последовательному смешиванию окислителя и топлива, дальнейшем сжатии полученной смеси, затем – поджоге и горении с расширением продуктов горения. Это расширение как раз и используется для приведения в движение, перемещения поршней, вращения турбины, то есть выполнения механических действий, обеспечивая постоянное давление. Процесс горения топливной смеси двигается с дозвуковой скоростью – этот процесс носит название дафлаграция.

Что касается новых двигателей, то ученые намерены использовать в них взрывное горение, то есть детонацию, при которой горение происходит со сверхзвуковой скоростью. И хотя в настоящее время явление детонации еще изучено не в полной мере, однако известно, что при таком виде горения возникает ударная волна, которая распространяясь по смеси топлива и воздуха вызывает химическую реакцию, следствием которой является выделение довольно большого количества тепловой энергии. Когда ударная волна проходит через смесь, происходит ее нагрев, что и приводит к детонации.

В разработке нового двигателя планируется использовать определенные наработки, которые были получены в процессе разработки детонационного пульсирующего двигателя. Его принцип работы состоит в том, что предварительно сжатая топливная смесь подается в камеру сгорания, где осуществляется ее поджог и детонация. Продукты горения расширяются в сопле, выполняя механические действия. Затем весь цикл повторяется сначала. Но недостатком пульсирующих двигателей является то, что частота повторения циклов слишком мала. Помимо этого, конструкция самих этих двигателей в случае увеличения числа пульсаций становится более сложной. Это объясняется необходимостью синхронизации работы клапанов, которые отвечают за подачу топливной смеси, а также непосредственно самими циклами детонирования. Пульсирующие двигатели ко всему прочему еще и очень шумные, для их работы необходимо большое количество топлива, а работа возможна только при постоянном дозированном вспрыскивании топлива.

Если сравнивать детонационные ротационные двигатели с пульсирующими, то принцип их работы немного отличается. Так, в частности, в новых двигателях предусмотрена постоянная незатухающая детонация топлива в камере сгорания. Подобное явление получило название спиновая, или вращающаяся детонация. Впервые она была описана в 1956 году советским ученым Богданом Войцеховским. А открыто это явление было гораздо раньше, еще в 1926 году. Первопроходцами стали британцы, которые заметили, что в определенных системах возникала яркая светящаяся «голова», которая двигалась по спирали, вместо детонационной волны, имеющей плоскую форму.

Войцеховский же, использовав фоторегистратор, который сам же и сконструировал, сфотографировал фронт волны, которая двигалась в кольцевой камере сгорания в топливной смеси. Спиновая детонация отличается от плоской тем, что в ней возникает единственная ударная поперечная волна, затем следует нагретый газ, который не прореагировал, а уже за этим слоем находится зона химической реакции. И именно такая волна предотвращает сгорание самой камеры, которую Марлен Топчиян обозвал «сплющенным бубликом».

Необходимо отметить, что в прошлом детонационные двигатели уже применялись. В частности речь идет и пульсирующем воздушно-реактивном двигателе, который использовался немцами в конце Второй мировой войны на крылатых ракетах «Фау-1». Производство его было достаточно простое, использование достаточно легкое, однако при этом этот двигатель был не очень надежным для решения важных задач.

Далее, в 2008 году, в воздух поднялся Rutang Long-EZ - экспериментальный самолет, оснащенный детонационным пульсирующим двигателем. Полет длился всего десять секунд на высоте тридцати метров. За это время силовая установка развила тягу порядка 890 ньютонов.

Экспериментальный образец двигателя, представленный американской лабораторией ВМС США, - это кольцевая конусообразная камера сгорания, имеющая диаметр 14 сантиметров со стороны подачи топлива и 16 сантиметров со стороны сопла. Между стенками камеры расстояние составляет 1 сантиметр, при этом «трубка» имеет длину 17,7 сантиметров.

Смесь воздуха и водорода используется в качестве топливной смеси, которая подается под давлением 10 атмосфер в камеру сгорания. Температура смеси составляет 27,9 градусов. Отметим, данная смесь признана самой удобной для изучения явления спиновой детонации. Но, как утверждают ученые, в новых двигателях вполне можно будет использовать топливную смесь, состоящую не только из водорода но и из других горючих компонентов и воздуха.

Экспериментальные исследования ротационного двигателя показали его большую эффективность и мощность по сравнению с двигателями внутреннего сгорания. Еще одно достоинство – значительная экономия топлива. В то же время, в ходе проведения эксперимента было выявлено, что сгорание топливной смеси в ротационном «пробном» двигателе происходит неоднородно, поэтому необходимо оптимизировать конструкцию двигателя.

Продукты горения, которые расширяются в сопле, можно собрать в одну газовую струю с помощью конуса (это так называемый эффект Коанда), а затем эту струю отправлять в турбину. Под действием этих газов турбина будет вращаться. Таким образом, частично работу турбины можно будет использовать для приведения в движение кораблей, а частично – для выработки энергии, которая необходима для корабельного оборудования и различных систем.

Сами двигатели можно производить без подвижных частей, что значительно упростит их конструкцию, что, в свою очередь, снизит стоимость силовой установки в целом. Но это только в перспективе. Перед тем, как запускать новые двигатели в серийное производство, необходимо решить немало непростых задач, одной из которых является подбор прочных термостойких материалов.

Отметим, что в данный момент ротационные детонационные двигатели считаются одними из наиболее перспективных двигателей. Разработками их также занимаются ученые из Техасского университета в Арлингтоне. Силовая установка, которая были ими создана, была названа «двигателем непрерывной детонации». В том же университете проводятся исследования по подбору различных диаметров кольцевых камер и различных топливных смесей, в состав которых входят водород и воздух или кислород в различных пропорциях.

В России также ведутся разработки в данном направлении. Так, в 2011 году, по словам управляющего директора научно-производственного объединения «Сатурн» И.Федорова, силами ученых Научно-технического центра имени Люльки, ведутся разработки пульсирующего воздушного реактивного двигателя. Работа ведется параллельно с разработками перспективного двигателя, получившего название «Изделие 129» для Т-50. Помимо этого, Федоров также сказал, что объединение ведет исследования по созданию перспективных самолетов следующего этапа, которые, как предполагается, будут беспилотными.

При этом руководитель не уточнил, о каком именно виде пульсирующего двигателя идет речь. В данный момент известны три типа таких двигателей – бесклапанный, клапанный и детонационный. Общепринятым, между тем, признан факт, что пульсирующие двигатели являются наиболее простыми и дешевыми в производстве.

На сегодняшний день некоторые крупные оборонные фирмы занимаются проведением исследований в сфере создания пульсирующих высокоэффективных реактивных двигателей. Среди этих фирм – американские Pratt & Whitney и General Electric и французская SNECMA.

Таким образом, можно сделать определенные выводы: создание нового перспективного двигателя имеет определенные трудности. Главная проблема в данный момент заключается в теории: что именно происходит при движении ударной детонационной волны по кругу, известно лишь в общих чертах, а это в значительной степени усложняет процесс оптимизации разработок. Поэтому новая технология, хотя и имеет очень большую привлекательность, но в масштабах промышленного производства она малореализуема.

Однако если исследователям удастся разобраться с теоретическими вопросами, можно будет говорить о настоящем прорыве. Ведь турбины используются не только на транспорте, но и в энергетической сфере, в которой повышение КПД может иметь еще более сильный эффект.

Использованы материалы:
http://science.compulenta.ru/719064/
http://lenta.ru/articles/2012/11/08/detonation/