Двигатель внутреннего сгорания с переменной степенью сжатия. Системы изменения степени сжатия двигателя. Изменение степени сжатия: зачем это нужно

Двигатель VC-T. Изображение: Nissan

Японский автопроизводитель Nissan Motor представил новый тип бензинового двигателя внутреннего сгорания , который по некоторым параметрам превосходит продвинутые современные дизельные двигатели.

Новый двигатель Variable Compression-Turbo (VC-T) способен при необходимости изменять степень сжатия газообразной горючей смеси, то есть изменять шаг хода поршней в цилиндрах ДВС. Этот параметр обычно является фиксированным. Судя по всему, VC-T станет первым в мире ДВС с изменяемой степенью сжатия смеси.

Степень сжатия - отношение объёма надпоршневого пространства цилиндра двигателя внутреннего сгорания при положении поршня в нижней мёртвой точке (полный объём цилиндра) к объёму надпоршневого пространства цилиндра при положении поршня в верхней мёртвой точке, то есть к объёму камеры сгорания.

Повышение степени сжатия в общем случае повышает его мощность и увеличивает КПД двигателя, то есть способствует снижению расхода топлива.

В обычных бензиновых двигателях степень сжатия обычно составляет от 8:1 до 10:1, а в спортивных машинах и гоночных болидах может достигать 12:1 или больше. При повышении степени сжатия двигатель нуждается в топливе с бóльшим октановым числом.


Двигатель VC-T. Изображение: Nissan

На иллюстрации показана разница в шаге поршней на разной степени сжатия: 14:1 (слева) и 8:1 (справа). В частности, демонстрируется механизм изменения степени сжатия от 14:1 к 8:1. Он происходит таким образом.

  1. В случае необходимости изменить степень сжатия активируется модуль Harmonic Drive и сдвигает рычаг актуатора.
  2. Рычаг актуатора поворачивает приводной вал (Control Shaft на схеме).
  3. Когда приводной вал поворачивается, он изменяет угол наклона многорычажной подвески (Multi-link на схеме)
  4. Многорычажная подвеска определяет высоту, на которую каждый поршень способен подняться в своём цилиндре. Таким образом, изменяется степень сжатия. Нижняя мёртвая точка поршня, судя по всему, остаётся прежней.
Конструкция запатентована Nissan (патент США № 6,505,582 от 14 июня 2003 года).

Изменение степени сжатия в ДВС можно в каком-то смысле сравнить с изменением угла атаки в винтах регулируемого шага - концепции, которая много десятилетий применяется в воздушных и гребных винтах. Изменяемый шаг винта позволяет поддерживать эффективность движителя близкой к оптимальной вне зависимости от скорости движения носителя в потоке.

Технология изменения степени сжатия ДВС даёт возможность сохранить мощность двигателя при соблюдении строгих нормативов к экономичности двигателя. Вероятно, это вообще самый реальный способ соблюсти эти нормативы. «Все сейчас работают над изменяемой степень сжатия и другими технологиями, чтобы значительно улучшить экономичность бензиновых двигателей, - говорит Джеймс Чао (James Chao), управляющий директор по Азиатско-Тихоокеанскому региону и консультант IHS, - По крайней мере последние двадцать лет или около того». Стоит упомянуть, что в 2000 году компания Saab показывала прототип такого двигателя Saab Variable Compression (SVC) для Saab 9-5, за который удостоилась ряда наград на технических выставках. Затем шведскую фирму купил концерн General Motors и прекратил работу над прототипом.


Двигатель Saab Variable Compression (SVC). Фото: Reedhawk

Двигатель VC-T обещают вывести на рынок в 2017 году с автомобилями марки Infiniti QX50. Официальная презентация назначена на 29 сентября на Парижском автосалоне. Этот двухлитровый четырёхцилиндровый двигатель будет обладать примерно такой же мощностью и крутящим моментом, что и 3,5-литровый двигатель V6, место которого займёт, но обеспечит экономию топлива 27%, по сравнению с ним.

Инженеры Nissan говорят также, что VC-T будет дешевле, чем современные продвинутые дизельные двигатели с турбонаддувом, и будет полностью соответствовать современным нормам на выбросы оксида азота и других выхлопных газов - такие правила действуют в Евросоюзе и некоторых других странах.

После Infiniti новыми двигателями планируется оснащать другие автомобили Nissan и, возможно, партнёрской компании Renault.


Двигатель VC-T. Изображение: Nissan

Можно предположить, что усложнённая конструкция ДВС в первое время вряд ли будет отличаться надёжностью. Есть смысл выждать несколько лет, прежде чем покупать автомобиль с двигателем VC-T, если только вы не хотите участвовать в тестировании экспериментальной технологии.

Изобретение относится к машиностроению, прежде всего к тепловым машинам, а именно к поршневому двигателю внутреннего сгорания (ДВС) с переменной степенью сжатия. Технический результат изобретения заключается в усовершенствовании кинематики механизма передачи усилий поршневого ДВС, таким образом, чтобы обеспечивать возможность регулирования степени сжатия при одновременном снижении реакции в опорах и сил инерции второго порядка. ДВС согласно изобретению имеет подвижно установленный в цилиндре поршень, который шарнирно соединен с шатуном. Движение шатуна передается на кривошип коленчатого вала. При этом, с целью обеспечения возможности управляемого изменения степени сжатия и хода поршня, между шатуном и кривошипом предусмотрено передаточное звено, которое выполнено с возможностью управления его движением с помощью управляющего рычага. Передаточное звено выполнено в виде поперечного рычага, соединенного с кривошипом посредством шарнира, который расположен в промежуточном положении на участке между двумя опорными точками. В одной из опорных точек поперечный рычаг соединен с шатуном, а в другой - с управляющим рычагом. Управляющий рычаг также шарнирно соединен с дополнительным кривошипом или эксцентриком, которые осуществляют управляющие движения, смещая ось качения управляющего рычага, чем обеспечивают изменение степени сжатия ДВС. Помимо этого ось качения управляющего рычага может совершать непрерывное циклическое движение, синхронизированное с вращением коленчатого вала. При этом, в случае соблюдения определенных геометрических соотношений между отдельными звенья механизма передачи усилий, могут быть уменьшены нагрузки на них и повышена плавность работы ДВС. 12 з.п. ф-лы, 10 ил.

Рисунки к патенту РФ 2256085

Настоящее изобретение относится к машиностроению, прежде всего к тепловым машинам. Изобретение относится, в частности, к поршневому двигателю внутреннего сгорания (ДВС), имеющему поршень, который подвижно установлен в цилиндре и который шарнирно соединен с шатуном, движение которого передается на кривошип коленчатого вала, при этом между шатуном и кривошипом предусмотрено передаточное звено, которое выполнено с возможностью управления его движением с помощью управляющего рычага с целью обеспечить управляемое перемещение поршня, прежде всего обеспечить возможность изменения степени сжатия и хода поршня, и которое выполнено в виде поперечного рычага, который соединен с кривошипом шарниром, который расположен в промежуточном положении на участке между опорной точкой, в которой поперечный рычаг соединен с шатуном, и опорной точкой, в которой поперечный рычаг соединен с управляющим рычагом, и на некотором удалении от линии, соединяющей между собой обе эти опорные точки, в которых поперечный рычаг соединен с управляющим рычагом и шатуном соответственно.

Из работы Wirbeleit F.G., Binder К. и Gwinner D., "Development of Piston with Variable Compression Height for Incrising Efficiency and Specific Power Output of Combustion Engines", SAE Techn. Pap., 900229, известен ДВС подобного типа с автоматически регулируемой степенью сжатия (ПАРСС) за счет изменения высоты поршня, который состоит из двух частей, между которыми сформированы гидравлические камеры. Изменение степени сжатия осуществляется автоматически путем изменения положения одной части поршня относительно другой за счет перепуска масла из одной такой камеры в другую с помощью специальных перепускных клапанов.

К недостаткам этого технического решения относится то, что системы типа ПАРСС предполагают наличие механизма регулирования степени сжатия, расположенного в высокотемпературной и весьма нагруженной зоне (в цилиндре). Опыт работы с системами типа ПАРСС показал, что на переходных режимах, в частности при разгоне автомобиля, работа ДВС сопровождается детонацией, поскольку гидравлическая система управления не позволяет обеспечить быстрое и одновременное по всем цилиндрам изменение степени сжатия.

Стремление вынести механизм регулирования степени сжатия из высокотемпературной и механически нагруженной зоны привело к появлению иных технических решений, предполагающих изменение кинематической схемы ДВС и введение в нее дополнительных элементов (звеньев), управлением которых обеспечивается изменение степени сжатия.

Так, например, у Jante A., "Kraftstoffverbrauchssenkung von Verbrennungsmotoren durch kinematische Mittel", Automobil-Industrie, № 1 (1980), с.с.61-65, описан ДВС (кинематическая схема которого показана на фиг.1), у которого между кривошипом 15 и шатуном 12 установлены два промежуточных звена - дополнительный шатун 13 и коромысло 14. Коромысло 14 совершает качательное движение с центром качания в шарнирной точке Z. Регулирование степени сжатия осуществляется за счет изменения положения точки А путем поворота эксцентрика 16, закрепленного на корпусе. Эксцентрик 16 поворачивается в зависимости от нагрузки двигателя, при этом центр качания, расположенный в шарнирной точке Z, перемещается по дуге окружности, изменяя таким образом положение верхней мертвой точки поршня.

Из работы Christoph Bolling и др., "Kurbetrieb fur variable Verdichtung", MTZ 58 (11) (1997), Сс.706-711, известен также двигатель типа FEV (кинематическая схема которого показана на фиг.2), у которого между кривошипом 17 и шатуном 12 установлен дополнительный шатун 13. Шатун 12, кроме того, связан с коромыслом 14, которое совершает качательное движение с центром качания в шарнирной точке Z. Регулирование степени сжатия осуществляется за счет изменения положения шарнирной точки Z путем поворота эксцентрика 16, закрепленного на корпусе двигателя. Эксцентрик 16 поворачивается в зависимости от нагрузки двигателя, при этом центр качания, расположенный в шарнирной точке Z, перемещается по дуге окружности, изменяя таким образом положение верхней мертвой точки поршня.

Из заявки DE 4312954 А1 (21.04.1993) известен двигатель типа IFA (кинематическая схема которого показана на фиг.3), у которого между кривошипом 17 и шатуном 12 установлен дополнительный шатун 13. Шатун 12, кроме того, связан с одним из концов коромысла 14, второй конец которого совершает качательное движение с центром качания в шарнирной точке Z. Регулирование степени сжатия осуществляется за счет изменения положения шарнирной точки Z путем поворота эксцентрика 16, который закреплен на корпусе двигателя. Эксцентрик 16 поворачивается в зависимости от нагрузки двигателя, при этом центр качания, расположенный в шарнирной точке Z, перемещается по дуге окружности, изменяя таким образом положение верхней мертвой точки поршня.

К недостаткам, присущим двигателям вышеописанных конструкций (известным из работы Jante А., из работы Christoph Bolling и др. и из заявки DE 4312954 А1), следует отнести в первую очередь недостаточно высокую плавность их работы, обусловленную высокими силами инерции второго порядка при возвратно-поступательном движении масс, что связано с особенностями кинематики механизмов и приводит к чрезмерному увеличению общей ширины или общей высоты силового агрегата. По этой причине такие двигатели практически не пригодны для их использования в качестве двигателей для транспортных средств.

Регулирование степени сжатия в поршневом ДВС позволяет решить следующие задачи:

Повысить среднее давление Ре путем увеличения давления наддува без увеличения максимального давления сгорания сверх заданных пределов за счет уменьшения степени сжатия по мере увеличения нагрузки двигателя;

Снизить расход топлива в диапазоне малых и средних нагрузок за счет увеличения степени сжатия по мере уменьшения нагрузки двигателя;

Повысить плавность работы двигателя.

Регулирование степени сжатия позволяет в зависимости от типа ДВС достичь следующих преимуществ (для ДВС с принудительным (искровым) зажиганием):

При сохранении достигнутого уровня экономичности двигателя при малых и средних нагрузках обеспечивается дальнейшее повышение номинальной мощности двигателя за счет увеличения давления наддува при уменьшении степени сжатия (см. фиг.4а, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия);

При сохранении достигнутого уровня номинальной мощности двигателя обеспечивается снижение расхода топлива при малых и средних нагрузках за счет увеличения степени сжатия до допустимого по детонации предела (см. фиг.4б, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия);

При сохранении достигнутого уровня номинальной мощности двигателя повышается экономичность при малых и средних нагрузках, а также снижается уровень шума двигателя при одновременном снижении номинальной частоты вращения коленчатого вала (см. фиг.4в, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия).

Аналогично ДВС с искровым зажиганием регулирование степени сжатия в дизельном двигателе может вестись в трех следующих равноправных направлениях:

При неизменном рабочем объеме и номинальной частоте вращения мощность двигателя повышают за счет увеличения давления наддува. В этом случае повышается не экономичность, а мощность транспортного средства (см. фиг.5а, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия);

При неизменном рабочем объеме и номинальной мощности повышают среднее давление Ре при снижении номинальной частоты вращения. В этом случае при сохранении мощностных характеристик транспортного средства повышается экономичность двигателя за счет повышения механического КПД (см. фиг.5б, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия);

Существующий двигатель большого рабочего объема на заменяют на двигатель малого рабочего объема, но той же мощности (см. фиг.5в, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия). В этом случае повышается экономичность двигателя в диапазоне средних и полных нагрузок, а также уменьшается масса и габариты двигателя.

В основу настоящего изобретения была положена задача усовершенствовать кинематику поршневого ДВС таким образом, чтобы при малых конструктивных затратах обеспечивать возможность регулирования степени сжатия при одновременном снижении реакции в опорах и сил инерции второго порядка.

В отношении поршневого ДВС указанного в начале описания типа эта задача решается согласно изобретению благодаря тому, что длина стороны, расположенной между опорной точкой, в которой поперечный рычаг соединен с управляющим рычагом, и опорной точкой, в которой поперечный рычаг соединен с шатуном, длина стороны, расположенной между опорной точкой, в которой поперечный рычаг соединен с управляющим рычагом, и шарниром, которым поперечный рычаг соединен с кривошипом, и длина стороны, расположенной между опорной точкой, в которой поперечный рычаг соединен с шатуном, и шарниром, которым поперечный рычаг соединен с кривошипом, удовлетворяют в пересчете на радиус кривошипа следующим соотношениям:

Согласно одному из предпочтительных вариантов выполнения предлагаемого в изобретении поршневого ДВС поперечный рычаг выполнен в виде треугольного рычага, в вершинах которого расположены опорные точки, в которых поперечный рычаг соединен с управляющим рычагом и шатуном, и шарнир, которым поперечный рычаг соединен с кривошипом.

Предпочтительно, чтобы длина l шатуна и длина k управляющего рычага, а также расстояние е между осью вращения коленчатого вала и продольной осью цилиндра удовлетворяли в пересчете на радиус г кривошипа следующим соотношениям:

В том случае, когда управляющий рычаг и шатун расположены по одну сторону поперечного рычага, расстояние f между продольной осью цилиндра и точкой шарнирного соединения управляющего рычага с корпусом ДВС и расстояние р между осью коленчатого вала и указанной точкой шарнирного соединения предпочтительно должны удовлетворять в пересчете на радиус r кривошипа следующим соотношениям:

В том же случае, когда управляющий рычаг и шатун расположены по разные стороны поперечного рычага, расстояние f между продольной осью цилиндра и точкой шарнирного соединения управляющего рычага и расстояние р между осью коленчатого вала и указанной точкой шарнирного соединения предпочтительно должны удовлетворять в пересчете на радиус г кривошипа следующим соотношениям:

В соответствии со следующим предпочтительным вариантом выполнения предлагаемого в изобретении поршневого ДВС точка шарнирного соединения управляющего рычага имеет возможность перемещения по управляемой траектории.

Предпочтительно также предусмотреть возможность фиксации точки шарнирного соединения управляющего рычага в различных регулируемых угловых положениях.

В соответствии еще с одним предпочтительным вариантом выполнения предлагаемого в изобретении поршневого ДВС предусмотрена возможность регулирования углового положения точки шарнирного соединения управляющего рычага в зависимости от характеризующих режим работы ДВС величин и рабочих параметров ДВС.

Согласно еще одному предпочтительному варианту выполнения предлагаемого в изобретении поршневого ДВС предусмотрена возможность синхронизированного с вращением коленчатого вала движения точки шарнирного соединения управляющего рычага по управляемой траектории.

В другом предпочтительном варианте выполнения предлагаемого в изобретении поршневого ДВС предусмотрена возможность синхронизированного с вращением коленчатого вала движения точки шарнирного соединения управляющего рычага по управляемой траектории и возможность регулирования фазового сдвига между движением этой точки и вращением коленчатого вала в зависимости от характеризующих режим работы ДВС величин и рабочих параметров ДВС.

В соответствии со следующим предпочтительным вариантом выполнения предлагаемого в изобретении поршневого ДВС предусмотрена возможность синхронизированного с вращением коленчатого вала движения точки шарнирного соединения управляющего рычага по управляемой траектории, при этом предусмотрена возможность изменения передаточного отношения между движением указанной точки и вращением коленчатого вала.

Предлагаемый в изобретении поршневой ДВС 1 показан на фиг.6а и 6б и имеет корпус 2 с цилиндром 3 и установленным в нем поршнем 4, шатун 6, который шарнирно соединен одним концом с поршнем 4, кривошип 8 коленчатого вала, установленного в корпусе 2, прицепной шатун 10, называемый также управляющим рычагом 10 и шарнирно соединенный одним его концом с корпусом 2, и треугольный поперечный рычаг 7, который одной его вершиной шарнирно соединен со вторым концом шатуна 6, второй его вершиной шарнирно соединен с кривошипом 8, а третьей его вершиной шарнирно соединен с прицепным шатуном 10. Для регулирования степени сжатия ось качания прицепного шатуна 10, т.е. точка Z его шарнирного соединения имеет возможность перемещения по управляемой траектории, определяемой, например, эксцентриком или дополнительным кривошипом 11.

В зависимости от положения оси качания прицепного шатуна предлагаемый в изобретении поршневой ДВС имеет два варианта конструктивного исполнения (см. фиг.6а и 6б):

В первом варианте (фиг.6а) горизонтальная плоскость, в которой лежит ось качания прицепного шатуна 10, т.е. точка Z его шарнирного соединения расположена выше точки соединения кривошипа 8 с поперечным рычагом 7 при нахождении кривошипа в его верхней мертвой точке или, иными словами, прицепной шатун 10 и шатун 6 расположены по одну сторону поперечного рычага 7;

Во втором варианте (фиг.6б) горизонтальная плоскость, в которой лежит ось качания прицепного шатуна 10, т.е. точка Z его шарнирного соединения расположена ниже точки соединения кривошипа 8 с поперечным рычагом 7 при нахождении кривошипа в его верхней мертвой точке или, иными словами, прицепной шатун 10 и шатун 6 расположены по разные стороны поперечного рычага 7.

Изменение положения точки Z шарнирного соединения прицепного рычага, т.е. его оси качания, позволяет за счет простого управляющего движения, осуществляемого дополнительным кривошипом, соответственно регулирующим эксцентриком, изменять степень сжатия. Помимо этого точка Z шарнирного соединения прицепного рычага, т.е. его ось качания может совершать непрерывное циклическое движение, синхронизированное с вращением коленчатого вала.

Как показано на фиг.7, предлагаемый в изобретении поршневой ДВС обладает значительными преимуществами перед известными системами (описанными у Jante А., у Christoph Bolling и др. и в DE 4312954 А1), а также перед обычным кривошипно-шатунным механизмом (СМ) касательно плавности его работы.

Однако указанные преимущества могут быть достигнуты только при соблюдении определенных геометрических соотношений, а именно, при правильном подборе длин отдельных элементов и их положений относительно оси коленчатого вала.

Согласно настоящему изобретению важное значение имеет определение размеров отдельных элементов (по отношению к радиусу кривошипа) и координат отдельных шарниров механизма передачи усилий, чего можно достичь за счет оптимизации такого механизма путем кинематического и динамического анализа. Цель оптимизации подобного, описываемого девятью параметрами механизма (фиг.8) состоит в уменьшении сил (нагрузки), действующих на его отдельные звенья, до минимально возможного уровня и в повышении плавности его работы.

Ниже со ссылкой на фиг.9 (9а и 9б), где изображена кинематическая схема ДВС, показанного на фиг.6 (6а и 6б соответственно), поясняется принцип работы регулируемого кривошипно-шатунного механизма. В процессе работы ДВС его поршень 4 совершает в цилиндре возвратно-поступательное движение, которое передается на шатун 6. Движение шатуна 6 передается через опорную (шарнирную) точку В на поперечный рычаг 7, свобода перемещения которого ограничена за счет его соединения с прицепным шатуном 10 в опорной (шарнирной) точке С. Если точка Z шарнирного соединения прицепного шатуна 10 неподвижна, то опорная точка С поперечного рычага 7 может совершать движение по дуге окружности, радиус которой равен длине прицепного шатуна 10. Положение такой круговой траектории движения опорной точки С относительно корпуса двигателя определяется положением точки Z. При изменении положения точки Z шарнирного соединения прицепного шатуна изменяется положение круговой траектории, по которой может перемещаться опорная точка С, что позволяет влиять на траектории движения других элементов кривошипно-шатунного механизма, прежде всего на положение в.м.т. поршня 4. Точка Z шарнирного соединения прицепного шатуна предпочтительно перемещается по круговой траектории. Однако точка Z шарнирного соединения прицепного шатуна может также перемещаться и по любой иной заданной управляемой траектории, при этом возможна также фиксация точки Z шарнирного соединения прицепного шатуна в любом положении траектории ее перемещения.

Поперечный рычаг 7 шарниром А соединен также с кривошипом 8 коленчатого вала 9. Этот шарнир А движется по круговой траектории, радиус которой определяется длиной кривошипа 8. Шарнир А занимает промежуточное положение, если смотреть вдоль линии, соединяющей между собой опорные точки В и С поперечного рычага 7. Наличие кинематической связи опорной точки С с прицепным шатуном 10 позволяет влиять на ее поступательное движение вдоль продольной оси 5 поршня 4. Перемещение опорной точки В вдоль продольной оси 5 поршня определяется траекторией движения опорной точки С поперечного рычага 7. Влияние на перемещение опорной точки В позволяет управлять возвратно-поступательным движением поршня 4 через шатун 6 и тем самым регулировать положение в.м.т. поршня 4.

В показанном на фиг.9а варианте прицепной шатун 10 и шатун 6 расположены по одну сторону поперечного рычага 7.

Поворотом выполненного в виде дополнительного кривошипа 11 регулирующего звена из показанного на фиг.9а примерно горизонтального положения, например, в обращенное вертикально вниз положение позволяет сместить положение в.м.т. поршня 4 вверх и тем самым увеличить степень сжатия.

На фиг.9б показана кинематическая схема выполненного по другому варианту ДВС, отличающаяся от показанной на фиг.9а схемы лишь тем, что прицепной шатун 10 вместе с выполненным в виде дополнительного кривошипа 11, соответственно регулирующего эксцентрика регулирующим звеном и шатун 6 расположены по разные стороны поперечного рычага 7. Во всем остальном принцип действия показанного на фиг.9б кривошипно-шатунного механизма аналогичен принципу действия показанного на фиг.9а кривошипно-шатунного механизма, у которого прицепной шатун 10 и шатун 6 расположены по одну сторону поперечного рычага 7.

На фиг.10 показана еще одна кинематическая схема кривошипно-шатунного механизма поршневого ДВС, на которой представлены положения определенных точек этого кривошипно-шатунного механизма и на которой штриховкой обозначены оптимальные области, в пределах которых с учетом упомянутых выше оптимальных областей значений для длин и положений элементов кривошипно-шатунного механизма могут перемещаться опорная точка В шарнирного соединения поперечного рычага 7 с шатуном 6, опорная точка С шарнирного соединения поперечного рычага 7 с прицепным шатуном 10 и точка Z шарнирного соединения прицепного шатуна 10. Для обеспечения особо плавной работы ДВС с исключительно малой нагрузкой на отдельные элементы и звенья его кривошипно-шатунного механизма геометрические параметры (длина и положение) элементов и звеньев этого кривошипно-шатунного механизма должны удовлетворять определенным, предпочтительным соотношениям. Длины сторон a, b и с треугольного поперечного рычага 7, где а обозначает длину стороны, расположенной между опорной точкой В шатуна и опорной точкой С прицепного шатуна, b обозначает длину стороны, расположенной между шарниром А кривошипа и опорной точкой С прицепного шатуна, а с обозначает расстояние между шарниром А кривошипа и опорной точкой В шатуна, можно описать следующими неравенствами в зависимости от радиуса г, который равен длине кривошипа 8:

Длина l шатуна 6, длина k прицепного шатуна 10 и расстояние е между осью вращения коленчатого вала 9 и продольной осью 5 цилиндра 3, которая одновременно является и продольной осью поршня, перемещающегося в этом цилиндре, согласно предпочтительному варианту удовлетворяют следующим соотношениям:

Для показанного на фиг.9а варианта, в котором шатун 6 и прицепной шатун 10 располагаются по одну сторону поперечного рычага 7, также можно задать оптимальное соотношение размеров. При этом расстояние f между продольной осью 5 цилиндра и точкой Z шарнирного соединения прицепного рычага 10 к его регулирующему звену, а также расстояние р между осью коленчатого вала и указанной точкой Z шарнирного соединения согласно предпочтительному варианту удовлетворяют следующим соотношениям:

При расположении прицепного шатуна и шатуна по разные стороны поперечного рычага оптимальное расстояние f между продольной осью поршня и точкой Z шарнирного соединения прицепного рычага к его регулирующему звену, а также оптимальное расстояние р между осью коленчатого вала и указанной точкой Z шарнирного соединения можно выбирать исходя из следующих соотношений:

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Поршневой двигатель внутреннего сгорания (ДВС), имеющий поршень (4), который подвижно установлен в цилиндре и который шарнирно соединен с шатуном (6), движение которого передается на кривошип (8) коленчатого вала (9), при этом между шатуном (6) и кривошипом (8) предусмотрено передаточное звено, которое выполнено с возможностью управления его движением с помощью управляющего рычага (10) с целью обеспечить управляемое перемещение поршня, прежде всего обеспечить возможность изменения степени сжатия и хода поршня, и которое выполнено в виде поперечного рычага (7), который соединен с кривошипом (8) шарниром (А), который расположен в промежуточном положении на участке между опорной точкой (В), в которой поперечный рычаг (7) соединен с шатуном (6), и опорной точкой (С), в которой поперечный рычаг (7) соединен с управляющим рычагом (10), и на некотором удалении от линии, соединяющей между собой обе эти опорные точки (В, С), в которых поперечный рычаг (7) соединен с управляющим рычагом (10) и шатуном (6) соответственно, отличающийся тем, что длина стороны (а), расположенной между опорной точкой (С), в которой поперечный рычаг (7) соединен с управляющим рычагом (10), и опорной точкой (В), в которой поперечный рычаг (7) соединен с шатуном (6), длина стороны (b), расположенной между опорной точкой (С), в которой поперечный рычаг (7) соединен с управляющим рычагом (10), и шарниром (А), которым поперечный рычаг (7) соединен с кривошипом (8), и длина стороны (с), расположенной между опорной точкой (В), в которой поперечный рычаг (7) соединен с шатуном (6), и шарниром (А), которым поперечный рычаг (7) соединен с кривошипом (8), удовлетворяют в пересчете на радиус (r) кривошипа следующим соотношениям:

6. Поршневой ДВС по п.4 или 5, отличающийся тем, что точка (Z) шарнирного соединения управляющего рычага (10) имеет возможность перемещения по управляемой траектории.

7. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность регулирования положения точки (Z) шарнирного соединения управляющего рычага (10) с помощью опирающегося на шарнир дополнительного кривошипа.

8. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность регулирования положения точки (Z) шарнирного соединения управляющего рычага (10) с помощью эксцентрика.

9. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность фиксации точки (Z) шарнирного соединения управляющего рычага (10) в различных регулируемых угловых положениях.

10. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность регулирования углового положения точки (Z) шарнирного соединения управляющего рычага (10) в зависимости от характеризующих режим работы ДВС величин и рабочих параметров ДВС.

11. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность синхронизированного с вращением коленчатого вала движения точки (Z) шарнирного соединения управляющего рычага (10) по управляемой траектории.

12. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность синхронизированного с вращением коленчатого вала (9) движения точки (Z) шарнирного соединения управляющего рычага (10) по управляемой траектории и возможность регулирования фазового сдвига между движением этой точки (Z) и вращением коленчатого вала (9) в зависимости от характеризующих режим работы ДВС величин и рабочих параметров ДВС.

13. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность синхронизированного с вращением коленчатого вала (9) движения точки (Z) шарнирного соединения управляющего рычага (10) по управляемой траектории, при этом предусмотрена возможность изменения передаточного отношения между движением указанной точки (Z) и вращением коленчатого вала (9).

Второе поколение кроссовера Infiniti QX50 получило кучу новшеств, самым важным из которых стал уникальный мотор - 2,0 литровая «турбочетверка» VC-Turbo с изменяемой степенью сжатия. Идея создания бензинового мотора, где степень сжатия в цилиндрах была бы величиной непостоянной, не нова. Так, при разгоне, когда требуется наибольшая отдача двигателя, можно на несколько секунд пожертвовать его экономичностью, уменьшив степень сжатия, - это позволит предотвратить детонацию, самопроизвольное возгорание топливной смеси, которое может возникнуть при высоких нагрузках. При равномерном движении степень сжатия, напротив, желательно повысить, чтобы добиться более эффективного сгорания топливной смеси и снижения расхода горючего - в этом случае нагрузка на мотор невелика и опасность возникновения детонации минимальна. В общем, в теории все просто, однако реализовать эту идею на практике оказалось не так уж легко. И японские конструкторы стали первыми, кто сумел довести замысел до серийного образца.

Суть разработанной корпорацией Nissan технологии в том, чтобы, в зависимости от требуемой отдачи мотора, непрерывно изменять максимальную высоту подъема поршней (так называемую верхнюю мертвую точку - ВМТ), что в свою очередь приводит к уменьшению или росту степени сжатия в цилиндрах. Ключевой деталью этой системы является особое крепление шатунов, которые соединяются с коленчатым валом через подвижный блок коромысел. Блок в свою очередь связан с эксцентриковым управляющим валом и электромотором, который по команде электроники приводит этот хитрый механизм в движение, меняя наклон коромысел и положение ВМТ поршней во всех четырех цилиндрах одновременно.

Разница степени сжатия в зависимости от положения ВМТ поршня. На левой картинке мотор находится в экономичном режиме, на правой - в режиме максимальной отдачи. A: когда требуется изменение степени сжатия, электромотор поворачивает и перемещает рычаг привода. B: приводной рычаг поворачивает управляющий вал. C: когда вал вращается, он действует на рычаг, связанный с коромыслом, изменяя угол наклона последнего. D: в зависимости от положения коромысла, ВМТ поршня поднимается или опускается, таким образом изменяя степень сжатия.

В результате при разгоне степень сжатия уменьшается до 8:1, после чего мотор переходит в экономичный режим работы со степенью сжатия 14:1. Его рабочий объем при этом меняется от 1997 до 1970 см3. «Турбочетверка» нового Infiniti QX50 развивает мощность 268 л. с. и крутящий момент в 380 Нм - ощутимо больше, чем 2,5 литровый V6 предшественника (его показатели - 222 л. с. и 252 Нм), расходуя при этом на треть меньше бензина. Кроме того, VC-Turbo на 18 кг легче атмосферной «шестерки», занимает меньше места под капотом и достигает максимума крутящего момента в зоне более низких оборотов.

Кстати, система регулировки степени сжатия не только повышает эффективность работы мотора, но и снижает уровень вибраций. Благодаря коромыслам шатуны при рабочем ходе поршней занимают почти вертикальное положение, в то время как у обычных двигателей они ходят из стороны в сторону (из-за чего шатуны и получили свое название). В результате даже без уравновешивающих валов этот 4-цилиндровый агрегат работает так же тихо и плавно, как V6. Но изменяемое положение ВМТ при помощи сложной системы рычагов - не единственная особенность нового мотора. Меняя степень сжатия, этот агрегат также способен переключаться между двумя рабочими циклам: классическим Отто, по которому функционирует основная масса бензиновых двигателей, и циклом Аткинсона, встречающимся в основном у гибридов. В последнем случае (при высокой степени сжатия) из-за большего хода поршней рабочая смесь сильнее расширяется, сгорая с большей эффективностью, в результате растет КПД и снижается расход бензина.

Двигаясь вверх или вниз, нижний рычаг меняет положение поршня относительно камеры сгорания.

Помимо двух рабочих циклов, этот мотор также использует две системы впрыска: классический распределенный MPI и непосредственный GDI, который повышает эффективность сгорания топлива и позволяет избежать детонации при высоких степенях сжатия. Обе системы работают попеременно, а при высоких нагрузках - одновременно. Положительный вклад в повышение КПД двигателя вносит и особое покрытие стенок цилиндров, которое наносится методом плазменного напыления, а затем закаливается и хонингуется. В результате получается ультрагладкая «зеркальная» поверхность, на 44% уменьшающая трение поршневых колец.

И какова выгода?

По словам инженеров, VC-T должен стать на 27% экономичнее текущих атмосферных V6 серии VQ, которые он постепенно заменит. Значит, паспортный расход в комбинированном цикле будет находиться в пределах 7 литров. И все-таки оценить реальный вклад новой технологии в экономичность пока невозможно, слишком уж различаются моторы VC-T и VQ. Объем, наличие наддува, количество цилиндров - все по-разному. Поэтому в реальных преимуществах японской разработки еще предстоит разобраться, но, как и любая революция, она интересна уже сама по себе.

Еще одна уникальная особенность мотора VC-Turbo - это интегрированная в его верхнюю опору система активного подавления вибраций Active Torque Road, основой которой является возвратно-поступательный актуатор. Эта система управляется датчиком ускорений, фиксирующим колебания двигателя и в ответ генерирует гасящие вибрации в противофазе. Активные опоры в Infiniti впервые использовали в 1998 году на дизельном моторе, но та система оказалась слишком громоздкой, поэтому не получила распространения. Проект пролежал под сукном до 2009 года, пока японские инженеры не взялись за его усовершенствование. На то, чтобы решить проблему избыточного веса и размеров гасителя колебаний, ушло еще 8 лет. Но результат впечатляет: благодаря ATR 4-цилиндровый агрегат нового Infiniti QX50 работает на 9 дБ тише, чем V6 его предшественника!

Одной из тех, кто максимально близко подошел к созданию серийного мотора с изменяемой степенью сжатия, была марка Saab. У шведов, правда, относительно друг друга смещались верхняя и нижняя часть блока цилиндров. А в моторе Infiniti/Nissan изменения затронули конструкцию кривошипно-шатунного механизма.

ЧИТАЙТЕ ТАКЖЕ НА САЙТЕ

Диоды - это электронные устройства, которые пропускают электрический ток только в одном направлении. Благодаря этому свойству диоды используются для преобразования переменного тока в постоянный. В автомобильной электрической системе диоды можно найти...

Автомобильный регулятор напряжения контролирует напряжение, генерируемое автомобильным генератором для подзарядки аккумулятора. Регулятор заставляет генератор поддерживать напряжение от 13,5 до 14,5 Вольт. Этого достаточно, чтобы безопасно подзарядит...

Принципиальная схема электрооборудования автомобилей "Москвич -408" и "Москвич-412" приведена на рисунке ниже. Напряжение в системе равно 12 В. На автомобилях устанавливается аккумуляторная батарея 6СТ-42. ...

Уникальная технология изменения степени сжатия представляет настоящий прорыв в моторостроении – 2-литровый VC-Turbo постоянно меняет характеристики, настраивая степень сжатия на оптимальную мощностную отдачу и максимальную топливную эффективность. По тяговым характеристикам этот 2-литровый бензиновый турбомотор вполне сравним с передовыми турбодизельными двигателями того же рабочего объема.

Двигатель VC-Turbo постоянно и совершенно незаметно для водителя изменяет степень сжатия с помощью системы рычагов, которые поднимают или опускают верхнюю мертвую точку (ВМТ) поршней, тем самым позволяя добиться наилучших характеристик мощности и экономичности.

Высокая степень сжатия в принципе делает работу двигателя более эффективной, однако в определенных режимах появляется риск взрывного сгорания (детонации). С другой стороны, низкая степень сжатия позволяет избежать детонации и развивать высокую мощность и крутящий момент. Во время движения степень сжатия двигателя VC-Turbo меняется от 8:1 (для максимальной динамики) до 14:1 (при минимальном расходе топлива), подчеркивая ориентированную на водителя философию INFINITI.

INFINITI’s VC-Turbo engine is the world’s first production-ready variable compression ratio engine – and it makes its production debut on the new QX50. This unique variable compression technology represents a breakthrough in combustion engine design – the QX50’s 2.0-liter VC-Turbo continually transforms, adjusting its compression ratio to optimize power and fuel efficiency. It combines the power of a 2.0-liter turbocharged gasoline engine with the torque and efficiency of an advanced four-cylinder diesel engine.

Уникальное сочетание динамики и экономичности превращает VC-Turbo в реальную альтернативу современным турбодизелям, не на словах, а на деле опровергая мнение, что только гибридные и дизельные силовые агрегаты могут обеспечить высокие показатели крутящего момента и экономичность. VC-Turbo развивает 268 л.с. (200 кВт) при 5600 об/мин и 380 Нм при 4400 об/мин, что является лучшим сочетанием мощности и тяги среди четырехцилиндровых двигателей. Удельная мощность VC-Turbo выше, чем у многих турбомоторов конкурентов и вплотную приближается к показателям некоторых бензиновых V6. Однопоточный турбонагнетатель гарантирует моментальный отклик двигателя на увеличение подачи топлива.

Новый INFINITI QX50 с двигателем VC-Turbo – это самый эффективный автомобиль в своем классе с непревзойденной экономичностью. Версия с передними ведущими колесами расходует всего 8,7 л/100 км в комбинированном цикле измерений, что на 35% лучше показателей QX50 предыдущего поколения с двигателем V6. Полноприводная версия премиального кроссовера с усредненным расходом 9,0 л/100 км на 30% эффективнее предшественника.

Среди других очевидных преимуществ конструкции нового мотора – компактные размеры и сниженная масса. Блок и головка цилиндров отлиты из легкого алюминиевого сплава, а компоненты системы регулировки степени сжатия изготовлены из высокоуглеродистой стали. В результате по сравнению с 3,5-литровым двигателем INFINITI серии VQ новый VC-Turbo весит легче на 18 кг, а кроме того занимает меньше пространства в моторном отсеке.

За изменение степени сжатия в двигателе VC-Turbo отвечают система рычагов, электромотор и уникальный волновой понижающий редуктор. Электромотор через редуктор соединен с управляющим рычагом. Редуктор вращается, поворачивая управляющий вал в блоке цилиндров, а тот в свою очередь изменяет положение коромысел, через которые поршни приводят коленвал. Наклон коромысел меняет положение верхней мертвой точки поршней, а вместе с ним и степень сжатия. Эксцентриковый управляющий вал регулирует степень сжатия одновременно во всех цилиндрах. В результате варьируется не только степень сжатия, но и рабочий объем двигателя в диапазоне от 1997 см3 (8:1) до 1970 см3 (14:1).

Двигатель VC-Turbo также незаметно для пользователя переключается между стандартным рабочим циклом Отто и циклом Аткинсона, еще сильнее увеличивая мощность и эффективность. Цикл Аткинсона традиционно используется для повышения эффективности гибридных силовых установок. При работе ДВС по циклу Аткинсона впускные клапаны перекрываются, позволяя рабочей смеси в цилиндрах сильнее расширяться, сгорая с большей эффективностью. Двигатель INFINITI работает по циклу Аткинсона при высоких показателях степени сжатия, когда из-за более длинного хода поршней впускные клапаны на короткое время остаются открытыми уже в фазе сжатия.

INFINITI’s VC-Turbo engine is the world’s first production-ready variable compression ratio engine – and it makes its production debut on the new QX50. This unique variable compression technology represents a breakthrough in combustion engine design – the QX50’s 2.0-liter VC-Turbo continually transforms, adjusting its compression ratio to optimize power and fuel efficiency. It combines the power of a 2.0-liter turbocharged gasoline engine with the torque and efficiency of an advanced four-cylinder diesel engine.

Когда степень сжатия VC-Turbo уменьшается, двигатель возвращается к обычному режиму работы (цикл Отто), с четко разделенными фазами выпуска, сжатия, сгорания и выпуска – таким образом, достигается более высокая мощность силового агрегата.

Помимо изменяемой степени сжатия в двигателе VC-Turbo применяется и ряд других передовых технологий INFINITI. Оптимальный баланс между эффективностью и мощностью обеспечивает как система распределенного впрыска (MPI), так и непосредственного (GDI):

  • GDI повышает эффективность сгорания топлива, предотвращая детонацию в двигателе при высоких степенях сжатия
  • MPI, в свою очередь, заранее подготавливает топливную смесь, обеспечивая ее полное сгорание в цилиндрах при низких нагрузках

При определенных оборотах двигатель самостоятельно переключается с одной системы впрыска на другую, а при максимальных нагрузках они могут работать и одновременно.

INFINITI’s VC-Turbo engine is the world’s first production-ready variable compression ratio engine – and it makes its production debut on the new QX50. This unique variable compression technology represents a breakthrough in combustion engine design – the QX50’s 2.0-liter VC-Turbo continually transforms, adjusting its compression ratio to optimize power and fuel efficiency. It combines the power of a 2.0-liter turbocharged gasoline engine with the torque and efficiency of an advanced four-cylinder diesel engine.

INFINITI’s VC-Turbo engine is the world’s first production-ready variable compression ratio engine – and it makes its production debut on the new QX50. This unique variable compression technology represents a breakthrough in combustion engine design – the QX50’s 2.0-liter VC-Turbo continually transforms, adjusting its compression ratio to optimize power and fuel efficiency. It combines the power of a 2.0-liter turbocharged gasoline engine with the torque and efficiency of an advanced four-cylinder diesel engine.

INFINITI’s VC-Turbo engine is the world’s first production-ready variable compression ratio engine – and it makes its production debut on the new QX50. This unique variable compression technology represents a breakthrough in combustion engine design – the QX50’s 2.0-liter VC-Turbo continually transforms, adjusting its compression ratio to optimize power and fuel efficiency. It combines the power of a 2.0-liter turbocharged gasoline engine with the torque and efficiency of an advanced four-cylinder diesel engine.

INFINITI’s VC-Turbo engine is the world’s first production-ready variable compression ratio engine – and it makes its production debut on the new QX50. This unique variable compression technology represents a breakthrough in combustion engine design – the QX50’s 2.0-liter VC-Turbo continually transforms, adjusting its compression ratio to optimize power and fuel efficiency. It combines the power of a 2.0-liter turbocharged gasoline engine with the torque and efficiency of an advanced four-cylinder diesel engine.

Однопоточный турбонагнетатель повышает мощность и эффективность двигателя, обеспечивая быстрые отклики на педаль газа на любых оборотах и при любой степени сжатия. Благодаря турбонаддуву по отдаче мотор сравним с шестицилиндровым атмосферным двигателем. Однопоточный нагнетатель отличается компактностью, а также сниженными потерями тепловой энергии и давления выхлопных газов.

Интегрированный в алюминиевую головку блока выпускной коллектор также повышает эффективность работы двигателя и определяет его компактные размеры. Подобное решение позволило инженерам INFINITI разместить каталитический нейтрализатор сразу за турбиной, сократив таким образом путь выхлопных газов. Благодаря этому нейтрализатор быстрее прогревается после запуска двигателя и раньше выходит на рабочий режим.

Variable compression ratio technology represents a breakthrough in powertrain development. The QX50, powered by the VC-Turbo, is the first production vehicle ever to give drivers an engine that transforms on demand, setting a new benchmark for powertrain capability and refinement. This uncommonly smooth engine offers customers power and performance, as well as efficiency and economy.

Давление наддува регулируется электронно-управляемым клапаном (wastegate), который с высокой точностью контролирует поток выхлопных газов, проходящих через турбину. Это гарантирует высокую мощность и экономичность, а также помогает сократить уровень вредных выбросов.

Благодаря системе изменения степени сжатия отлично сбалансированный двигатель VC-Turbo обходится без уравновешивающих валов, обычно необходимых четырехцилиндровым моторам. VC-Turbo работает более плавно, нежели обычные рядные аналоги, а уровень шума и вибраций сравним с показателями традиционных V6. Это стало возможным, в том числе и благодаря компоновке с дополнительными коромыслами, в которой шатуны при рабочем ходе поршней почти вертикальны (в отличие от традиционного кривошипно-шатунного механизма, где они движутся из стороны в сторону). В итоге происходит идеальное возвратно-поступательное движение, не требующее уравновешивающих валов. Именно поэтому, несмотря на применение системы изменения степени сжатия, мотор VC-Turbo такой же компактный, как традиционный 2-литровый четырехцилиндровый двигатель.

Особенно нужно отметить и крайне низкий уровень вибраций нового двигателя. На заводских испытаниях, в ходе которых специалисты INFINITI сравнивали характеристики VC-Turbo с четырехцилиндровыми моторами конкурентов, революционный двигатель продемонстрировал значительно меньший уровень шума – почти как у 6-цилиндровых агрегатов.

В этом есть заслуга и применяемого INFINITI «зеркального» покрытия стенок цилиндров – оно на 44% уменьшает трение, позволяя двигателю работать ровнее. Покрытие наносится методом плазменного напыления, затем закаливается и хонингуется для создания ультра-гладкой поверхности.

Новый INFINITI QX50 c 2-литровым мотором VC-Turbo – первый в мире автомобиль, оснащенный системой активного подавления вибраций Active Torque Rod (ATR). Новый QX50 – единственный автомобиль в классе, оснащенный подобной технологией. Интегрированная в верхнюю опору двигателя, через которую на кузов обычно передается большая часть шума и вибраций, ATR оснащена датчиком ускорений, фиксирующим колебания. Система генерирует возвратно-поступательные вибрации в противофазе, позволяя четырехцилиндровому агрегату оставаться таким же тихим и плавным, как и моторы V6, и на 9 Дб уменьшает шум двигателя по сравнению с предыдущим QX50. В итоге VC-Turbo – один из самых тихих и уравновешенных двигателей в сегменте премиальных внедорожников.

Первые в мире активные опоры INFINITI установил на дизельный двигатель еще в 1998 году, подтверждая инновационность бренда в области силовых агрегатов. Систему ATR инженеры INFINITI разрабатывали с 2009-го по 2017 год, особое внимание уделив уменьшению размеров и массы – на первых прототипах главной проблемой считались габариты вибромотора. Однако, разработка более компактных возвратно-поступательных актуаторов позволила установить ATR в корпус меньшего размера, в полной мере сохранив способность системы максимально эффективно гасить вибрации.

На тему:

  • Британцы определили дату конца эры ДВС
  • Специалисты компании H2 рассказали об эффективности…

За более чем столетний жизненный путь двигатель внутреннего сгорания (ДВС) настолько преобразился, что от родоначальника остался только принцип действия. Почти все этапы модернизации были направлены на повышение коэффициента полезного действия (КПД) двигателя. Показатель КПД можно назвать универсальным. В нем скрыты многие характеристики - расход топлива, мощность, крутящий момент, состав выхлопных газов и т.д. Широкое применение новых технических идей - впрыск топлива, электронные системы зажигания и управления двигателем, 4, 5 и даже 6 клапанов на цилиндр - сыграло положительную роль в повышении КПД двигателей.

Тем не менее, как показал Женевский автосалон, до завершения процесса модернизации ДВС еще далеко. На этом популярном международном автошоу компания SAAB представила результат своего 15-летнего труда - опытный образец нового двигателя с изменяемой степенью сжатия - SAAB Variable Compression (SVC), ставший сенсацией в мире моторов.

Технология SVC и ряд других передовых и нетрадиционных с точки зрения существующих понятий о ДВС технических решений позволили снабдить новинку фантастическими характеристиками. Так, пятицилиндровый двигатель объемом всего 1,6 л, созданный для обычных серийных машин, развивает немыслимую мощность 225 л.с. и крутящий момент 305 Нм. Превосходными оказались и другие, особенно важные сегодня, характеристики - расход топлива при средних нагрузках снижен на целых 30%, на столько же уменьшен показатель выбросов СО2. Что касается СО, СН и NОx и т.д., то они, по утверждению создателей, соответствуют всем существующим и планируемым на ближайшее будущее нормам токсичности. В дополнение к этому переменная степень сжатия дает двигателю SVC возможность работать на различных марках бензина - от А-76 до Аи-98 - практически без ухудшения характеристик и исключая появление детонации.

Безусловно, существенная заслуга таких характеристик - в технологии SVC, т.е. в возможности изменять степень сжатия. Но перед тем, как познакомиться с устройством механизма, позволившим изменять эту величину, вспомним некоторые истины из теории конструкции ДВС.

Степень сжатия

Степень сжатия - это отношение суммы объемов цилиндра и камеры сгорания к объему камеры сгорания. С увеличением степени сжатия в камере сгорания повышаются давление и температура, что создает более благоприятные условия для воспламенения и сгорания горючей смеси и повышает эффективность использования энергии топлива, т.е. КПД. Чем степень сжатия выше, тем КПД больше.

Проблем с созданием бензиновых моторов с высокой степенью сжатия нет и не было. А не делают их по следующей причине. При такте сжатия у таких двигателей давление в цилиндрах повышается до очень больших величин. Это, естественно, вызывает повышение температуры в камере сгорания и создает благоприятные условия для появления детонации. А детонация, как мы знаем (см. стр. 26) - явление опасное. Во всех созданных до этого времени двигателях степень сжатия была постоянной и определялась в зависимости от давления и температурного режима в камере сгорания при максимальной нагрузке, когда расход топлива и воздуха максимальны. Работает двигатель в таком режиме не всегда, можно сказать, даже очень редко. На трассе или в городе, когда скорость практически постоянна, мотор работает при малых или средних нагрузках. В такой ситуации для более эффективного использования энергии топлива неплохо бы иметь и большую степень сжатия. Эту проблему решили инженеры SAAB - создатели технологии SVC.

Технология SVC

Прежде всего необходимо отметить, что в новом двигателе вместо традиционной головки блока и гильз цилиндров, которые отливались непосредственно в блоке или запрессовывались, имеется одна моноголовка, объединившая головку блока и гильзы цилиндров. Для изменения степени сжатия, а точнее, объема камеры сгорания моноголовка сделана подвижной. С одной стороны она посажена на вал, выполняющий функцию опоры, а с другой - опирается и приводится в движение отдельным кривошипно-шатунным механизмом. Радиус кривошипа обеспечивает смещение головки относительно вертикальной оси на 40. Этого вполне достаточно, чтобы изменять объем камеры для получения степени сжатия от 8:1 до 14:1.

Необходимую степень сжатия определяет электронная система управления двигателем SAAB Trionic, которая следит за нагрузкой, скоростью, качеством топлива и на основании этого управляет гидроприводом кривошипа. Так, при максимальной нагрузке устанавливается степень сжатия 8:1, а при минимальной - 14:1. Объединение гильз цилиндров с их головкой, кроме всего прочего позволило инженерам SAAB придать каналам рубашки охлаждения более совершенную форму, что повысило эффективность процесса отвода тепла от стенок камеры сгорания и гильз цилиндров.

Подвижность гильз цилиндров и их головки потребовали внесения изменений в конструкцию блока двигателя. Плоскость стыка блока и головки стала ниже на 20 см. Что касается герметичности стыка, то она обеспечивается резиновой гофрированной прокладкой, которая сверху защищена от повреждений металлическим кожухом.

Мал, да удал

Для многих может стать непонятным, как в двигатель с таким небольшим объемом «зарядили» больше двухсот «лошадей» - ведь такая мощность может отрицательно сказаться на его ресурсе. Создавая двигатель SVC, инженеры руководствовались совсем другими задачами. Доведение моторесурса до требуемых норм - дело технологов. Что касается малого объема двигателя, то сделано в полном соответствии с теорией ДВС. Исходя из ее законов наиболее благоприятный режим работы двигателя с точки зрения повышения КПД - при большой нагрузке (на повышенных оборотах), когда дроссельная заслонка полностью открыта. В этом случае он максимально использует энергию топлива. А так как двигатели с меньшим рабочим объемом работают в основном при максимальных нагрузках, то и КПД у них выше.

Секрет превосходства малолитражных двигателей по показателю КПД объясняется отсутствием так называемых насосных потерь. Возникают они при небольших нагрузках, когда двигатель работает на малых оборотах и дроссельная заслонка лишь немного приоткрыта. В этом случае при такте впуска в цилиндрах создается большое разряжение - вакуум, оказывающий сопротивление движению поршня вниз и соответственно снижающий КПД. При полностью открытой дроссельной заслонке таких потерь нет, так как воздух поступает в цилиндры практически беспрепятственно.

Чтобы избежать насосных потерь на все 100%, в новом двигателе инженеры SAAB также использовали «наддув» воздуха под высоким давлением - 2,8 атм., с помощью механического нагнетателя - компрессора. Предпочтение компрессору было отдано по нескольким причинам: во-первых, ни один турбонагнетатель не способен создать такое давление наддува; во-вторых, реакция компрессора на изменение нагрузки практически мгновенная, т.е. нет замедления, характерного для турбонаддува. Наполнение цилиндров свежим зарядом в двигателе SAAB улучшили и с помощью популярного сегодня современного газораспределительного механизма, в котором на каждый цилиндр приходится по четыре клапана, и благодаря применению промежуточного охладителя воздуха (Intercooler).

Опытный образец двигателя SVC, по оценке немецкой компании по разработке моторов FEV Motorentechnie в Aachen, является вполне работоспособным. Но несмотря на положительную оценку, в серийное производство он будет запущен спустя некоторое время - после его доработки и доводки под запросы покупателей.